Weight pruning-UNet: Weight pruning UNet with depth-wise separable convolutions for semantic segmentation of kidney tumors
DOI: 10.4103/jmss.jmss_108_21
Abstract
Keywords
Full Text:
PDFReferences
American Cancer Society. Available from: https://www.cancer.org/cancer/kidney-cancer/detection-diagnosis-staging/detection.html. [Last accessed on 2019 Dec 17].
Hesamian MH, Jia W, He X, Kennedy P. Deep learning techniques for medical image segmentation: Achievements and challenges. J Digit Imaging 2019;32:582-96.
Sharma K. Machine Learning Methods for Segmentation in Autosomal Dominant Polycystic Kidney Disease. Munich, Germany: Technische Universität München; 2017.
Vaseli H. Designing lightweight deep learning models for echocardiography view classification, 2019, doi: 10.1117/12.2512913.
Denil M, Shakibi B, Dinh L, Ranzato M, De Freitas N. Predicting parameters in deep learning. 2013. http://arxiv.org/abs/1306.0543.
Lecun Y, Denker JS, Solla SA. Optimal brain damage. Adv Neural Inf Process Syst 1990;2:598-605.
Alvarez JM, Salzmann M. Learning the number of neurons in deep networks, Advances in Neural Information Processing Systems, 2016. https://doi.org/10.48550/arXiv.1611.06321.
Han S, Mao H, Dally WJ. Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding 2016. http://arxiv.org/abs/1510.00149.
Weidendorfer J. Improving landfill monitoring programs Classification of hand movements with the aid of geoelectrical using and geographical information systems Master of Science Thesis: Proc. Asia South Pacific Des. Autom. Conf. ASP-DAC, 2017.
Zhang X, Zhou X, Lin M, Sun J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In Proceedings IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2017. p. 6848-56.
Qin Z, Zhang Z, Checn X, Wang C, Peng Y. FD-MobileNet: Improved MobileNet with a Fast- Downsampling Strategy. 25th IEEE International Conference on Image Processing (ICIP); 2018. p. 1363-7.
Ronneberger O, Fischer P. Thomas Brox: U-Net: Convolutional Networks for Biomedical Image Segmentation. MICCAI; 2015. doi: 10.1007/978-3-319-24574-4_28.
Linguraru MG, Wang S, Shah F, Gautam R, Peterson J, Marston Linehan W, et al. Automated noninvasive classification of renal cancer on multiphase CT. Med Phys 2011;38:5738-46.
Lee HS, Hong H, Kim J. Detection and Segmentation of Small Renal Masses in Contrast-Enhanced CT Images Using Texture and Context Feature Classification. In IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017); 2017. p. 583-6.
Shah B, Sawla C, Bhanushali S, Bhogale P. Kidney tumor segmentation and classification on abdominal CT scans. Int J Comput Appl 2017;164:1-5.
Yang G, Gu J, Chen Y, Liu W, Tang L, Shu H, et al. Automatic Kidney Segmentation in CT Images Based on Multi-atlas Image Registration In 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2017. p. 5538-41.
Thong W, Kadoury S, Piche N, Pal CJ. Convolutional networks for kidney segmentation in contrast-enhanced CT scans. Comput Methods Biomech Biomed Engin 2016;6:277-82.
Skalski A, Jakubowski J, Drewniak T. Kidney Tumor Segmentation and Detection on Computed Tomography Data. In IEEE International Conference on Imaging Systems and Techniques (IST); 2016. p. 238-42.
Wang G, Li W, Zuluaga MA, Pratt R, Patel PA, Aertsen M, et al. Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE Trans Med Imaging 2018;37:1562-73.
Hassibi ?, Stork D. Second order derivaties for network prunning: Optimal brain surgeon, Adv. NIPS5, 1993.
Heller N. et al. The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: Results of the KiTS19 challenge, Med. Image Anal 2021. doi: 10.1016/j.media.2020.101821.
Kutikov A, Uzzo RG. The R.E.N.A.L. nephrometry score: A comprehensive standardized system for quantitating renal tumor size, location and depth. J Urol 2009;182:844-53.
Shen W, Wang X, Wang Y, Bai X, Zhang A. Deepcontour: A Deep Convolutional Feature Learned by Positive-Sharing Loss for Contour Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2015. p. 3982-91.
Liu R. An intriguing failing of convolutional neural networks and the Coord Conv solution, 2018. https://doi.org/10.48550/arXiv.1904.00445.
Kingma DP, Ba J. Adam. A Method of Stochastic Optimization; 2014.
Sabarinathan D, Beham MP, Roomi SM. Hyper Vision Net: Kidney Tumor Segmentation Using Coordinate Convolutional Layer and Attention Unit. In National Conference on Computer Vision, Pattern Recognition, Image Processing, and Graphics. Springer; 2019. p. 609-18.
Refbacks
- There are currently no refbacks.
https://e-rasaneh.ir/Certificate/22728
ISSN : 2228-7477