Electroencephalography-based brain–Computer interface motor imagery classification

Ehsan Mohammadi, Parisa Ghaderi Daneshmand, Seyyed Mohammad Sadegh Moosavi Khorzoog

DOI: 10.4103/jmss.JMSS_74_20

Abstract


Background: Advances in the medical applications of brain–computer interface, like the motor imagery systems, are highly contributed to making the disabled live better. One of the challenges with such systems is to achieve high classification accuracy. Methods: A highly accurate classification algorithm with low computational complexity is proposed here to classify different motor imageries and execution tasks. An experimental study is performed on two electroencephalography datasets (Iranian Brain–Computer Interface competition [iBCIC] dataset and the world BCI Competition IV dataset 2a) to validate the effectiveness of the proposed method. For lower complexity, the common spatial pattern is applied to decrease the 64 channel signal to four components, in addition to increase the class separability. From these components, first, some features are extracted in the time and time–frequency domains, and next, the best linear combination of these is selected by adopting the stepwise linear discriminant analysis (LDA) method, which are then applied in training and testing the classifiers including LDA, random forest, support vector machine, and K nearest neighbors. The classification strategy is of majority voting among the results of the binary classifiers. Results: The experimental results indicate that the proposed algorithm accuracy is much higher than that of the winner of the first iBCIC. As to dataset 2a of the world BCI competition IV, the obtained results for subjects 6 and 9 outperform their counterparts. Moreover, this algorithm yields a mean kappa value of 0.53, which is higher than that of the second winner of the competition. Conclusion: The results indicate that this method is able to classify motor imagery and execution tasks in both effective and automatic manners.

Keywords


Brain–computer-interface, electroencephalography, linear discriminant analysis, motor imagery, pattern recognition

Full Text:

PDF

References


Boostani R, Graimann B, Moradi MH, Pfurtscheller G. A comparison approach toward finding the best feature and classifier in cue-based BCI. Med Biol Eng Comput 2007;45:403-12.

Rao RP. Brain-Computer Interfacing: An Introduction. England: Cambridge University Press; 2013.

Luo J, Feng Z, Zhang J, Lu N. Dynamic frequency feature selection based approach for classification of motor imageries. Comput Biol Med 2016;75:45-53.

Zheng Q, Zhu F, Qin J, Heng PA. Multiclass support matrix machine for single trial EEG classification. Neurocomputing 2018;275:869-80.

Li D, Zhang H, Khan MS, Mi F. A self-adaptive frequency selection common spatial pattern and least squares twin support vector machine for motor imagery electroencephalography recognition. Biomed Signal Process Control 2018;41:222-32.

Ang KK, Chin ZY, Wang C, Guan C, Zhang H. Filter bank common spatial pattern algorithm on bci competition iv datasets 2a and 2B. Front Neurosci 2012;6:39.

Arvaneh M, Guan C, Ang KK, Quek C. Optimizing the channel selection and classification accuracy in EEG-based BCI. IEEE Trans Biomed Eng 2011;58:1865-73.

Blankertz B, Tomioka R, Lemm S, Kawanabe M, Müller KR. Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process Mag 2008;25:41-56.

Nicolas-Alonso LF, Corralejo R, Gomez-Pilar J, Álvarez D, Hornero R. Adaptive semi-supervised classification to reduce intersession non-stationarity in multiclass motor imagery-based brain-computer interfaces. Neurocomputing 2015;159:186-96.

Dornhege G, Blankertz B, Krauledat M, Losch F, Curio G, Müller KR. Combined optimization of spatial and temporal filters for improving brain-computer interfacing. IEEE Trans Biomed Eng 2006;53:2274-81.

Higashi H, Tanaka T. Simultaneous design of FIR filter banks and spatial patterns for EEG signal classification. IEEE Trans Biomed Eng 2013;60:1100-10.

Lemm S, Blankertz B, Curio G, Müller KR. Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans Biomed Eng 2005;52:1541-8.

Wu W, Gao X, Hong B, Gao S. Classifying single-trial EEG during motor imagery by iterative spatio-spectral patterns learning (ISSPL). IEEE Trans Biomed Eng 2008;55:1733-43.

Zhang H, Chin ZY, Ang KK, Guan C, Wang C. Optimum spatio-spectral filtering network for brain-computer interface. IEEE Trans Neural Netw 2011;22:52-63.

Hjorth B. EEG analysis based on time domain properties. Electroencephalogr Clin Neurophysiol 1970;29:306-10.

Vourkas M, Papadourakis G, Micheloyannis S. Use of ANN and Hjorth parameters in mental-task discrimination. In: 2000 First International Conference Advances in Medical Signal and Information Processing, IEEE Conference Publication. IET; 2000, no. 476, Bristol, UK, p. 327-32.

Vidaurre C, Krämer N, Blankertz B, Schlögl A. Time Domain Parameters as a feature for EEG-based Brain-Computer Interfaces. Neural Netw 2009;22:1313-9.

Blankertz B, Sannelli C, Halder S, Hammer EM, Kübler A, Müller KR, et al. Neurophysiological predictor of SMR-based BCI performance. Neuroimage 2010;51:1303-9.

Shahid S, Prasad G. Bispectrum-based feature extraction technique for devising a practical brain-computer interface. J Neural Eng 2011;8:025014.

Fatourechi M, Mason SG, Birch GE, Ward RK. A wavelet-based approach for the extraction of event related potentials from EEG. In: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. IEEE; 2004. p. ii-737-40.

Ting W, Guo-zheng Y, Bang-hua Y, Hong S. EEG feature extraction based on wavelet packet decomposition for brain computer interface. Measurement 2008;41:618-25.

Coyle D, Prasad G, McGinnity TM. A time-frequency approach to feature extraction for a brain-computer interface with a comparative analysis of performance measures. EURASIP J Appl Signal Processing 2005;2005:3141-51.

Herman P, Prasad G, McGinnity TM, Coyle D. Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification. IEEE Trans Neural Syst Rehabil Eng 2008;16:317-26.

Wang T, Deng J, He B. Classifying EEG-based motor imagery tasks by means of time-frequency synthesized spatial patterns. Clin Neurophysiol 2004;115:2744-53.

Meng J, Yao L, Sheng X, Zhang D, Zhu X. Simultaneously optimizing spatial spectral features based on mutual information for EEG classification. IEEE Trans Biomed Eng 2015;62:227-40.

Cantillo-Negrete J, Carino-Escobar RI, Carrillo-Mora P, Elias-Vinas D, Gutierrez-Martinez J. Motor imagery-based brain-computer interface coupled to a robotic hand orthosis aimed for neurorehabilitation of stroke patients. J Healthc Eng 2018;2018:1624637.

Meng J, Streitz T, Gulachek N, Suma D, He B. Three-dimensional brain-computer interface control through simultaneous overt spatial attentional and motor imagery tasks. IEEE Trans Biomed Eng 2018;65:2417-27.

Tang Z chuan, Li C, Wu J feng, Liu P cheng, Cheng S wei. Classification of EEG-based single-trial motor imagery tasks using a B-CSP method for BCI. Front Inf Technol Electron Eng 2019;20:1087-98. Back to cited text no. 28

Kim YJ, Kwak NS, Lee SW. Classification of motor imagery for Ear-EEG based brain-computer interface. In: 2018 6th International Conference on Brain-Computer Interface, South Korea, IEEE; 2018. p. 1-2.

Padfield N, Zabalza J, Zhao H, Masero V, Ren J. EEG-based brain-computer interfaces using motor-imagery: Techniques and challenges. Sensors (Switzerland). 2019;19:1423.

Rodríguez-Bermúdez G, Sánchez-Granero MÁ, García-Laencina PJ, Fernández-Martínez M, Serna J, Roca-Dorda J. Testing the self-similarity exponent to feature extraction in motor imagery based brain computer interface systems. Int J Bifurc Chaos 2015;25:1540023.

Hammon PS, de Sa VR. Preprocessing and meta-classification for brain-computer interfaces. IEEE Trans Biomed Eng 2007;54:518-25. Back to cited text no. 32

Pfurtscheller G, Flotzinger D, Kalcher J. Brain-computer interface-A new communication device for handicapped persons. J Microcomput Appl 1993;16:293-9.

1st Iranian Brain Computer Interface Competition Was Held at NBML on December; 2017. Available from: https://nbml.ir/en/posts/1st-iranian-brain-computer-interface-competition-was-held-at-nbml-on-december-2017-.

Aghdam NS, Moradi MH, Shamsollahi MB, Nasrabadi AM, Setarehdan SK, Shalchyan V, et al. The 2017 and 2018 Iranian brain-computer interface competitions. J Med Signals Sens 2020;10:208-16.

BCI Competition IV - Final Results. Available from: http://www.bbci.de/competition/iv/results/index.html.

Yu H, Lu H, Wang S, Xia K, Jiang Y, Qian P. A general common spatial patterns for EEG analysis with applications to vigilance detection. IEEE Access 2019;7:111102-14.

Meng J, Liu G, Huang G, Zhu X. Automated selecting subset of channels based on CSP in motor imagery brain-computer interface system. In: 2009 IEEE International Conference on Robotics and Biomimetic, ROBIO 2009. 2009. p. 2290-4.

Higuchi T. Approach to an irregular time series on the basis of the fractal theory. Physica D: Nonlinear Phenom 1988;31:277-83.

Liu T, Yao W, Wu M, Shi Z, Wang J, Ning X. Multiscale permutation entropy analysis of electrocardiogram. Phys A Stat Mech Appl 2017;471:492-8.

Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clin Neurophysiol 1999;110:1842-57.

Qiu Z, Jin J, Lam HK, Zhang Y, Wang X, Cichocki A. Improved SFFS method for channel selection in motor imagery based BCI. Neurocomputing 2016;207:519-27.

Ge S, Wang R, Yu D. Classification of four-class motor imagery employing single-channel electroencephalography. PLoS One 2014;9:e98019.


Refbacks

  • There are currently no refbacks.


 

  https://e-rasaneh.ir/Certificate/22728

https://e-rasaneh.ir/

ISSN : 2228-7477