Electroencephalography-based brain–Computer interface motor imagery classification
DOI: 10.4103/jmss.JMSS_74_20
Abstract
Keywords
Full Text:
PDFReferences
Boostani R, Graimann B, Moradi MH, Pfurtscheller G. A comparison approach toward finding the best feature and classifier in cue-based BCI. Med Biol Eng Comput 2007;45:403-12.
Rao RP. Brain-Computer Interfacing: An Introduction. England: Cambridge University Press; 2013.
Luo J, Feng Z, Zhang J, Lu N. Dynamic frequency feature selection based approach for classification of motor imageries. Comput Biol Med 2016;75:45-53.
Zheng Q, Zhu F, Qin J, Heng PA. Multiclass support matrix machine for single trial EEG classification. Neurocomputing 2018;275:869-80.
Li D, Zhang H, Khan MS, Mi F. A self-adaptive frequency selection common spatial pattern and least squares twin support vector machine for motor imagery electroencephalography recognition. Biomed Signal Process Control 2018;41:222-32.
Ang KK, Chin ZY, Wang C, Guan C, Zhang H. Filter bank common spatial pattern algorithm on bci competition iv datasets 2a and 2B. Front Neurosci 2012;6:39.
Arvaneh M, Guan C, Ang KK, Quek C. Optimizing the channel selection and classification accuracy in EEG-based BCI. IEEE Trans Biomed Eng 2011;58:1865-73.
Blankertz B, Tomioka R, Lemm S, Kawanabe M, Müller KR. Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process Mag 2008;25:41-56.
Nicolas-Alonso LF, Corralejo R, Gomez-Pilar J, Álvarez D, Hornero R. Adaptive semi-supervised classification to reduce intersession non-stationarity in multiclass motor imagery-based brain-computer interfaces. Neurocomputing 2015;159:186-96.
Dornhege G, Blankertz B, Krauledat M, Losch F, Curio G, Müller KR. Combined optimization of spatial and temporal filters for improving brain-computer interfacing. IEEE Trans Biomed Eng 2006;53:2274-81.
Higashi H, Tanaka T. Simultaneous design of FIR filter banks and spatial patterns for EEG signal classification. IEEE Trans Biomed Eng 2013;60:1100-10.
Lemm S, Blankertz B, Curio G, Müller KR. Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans Biomed Eng 2005;52:1541-8.
Wu W, Gao X, Hong B, Gao S. Classifying single-trial EEG during motor imagery by iterative spatio-spectral patterns learning (ISSPL). IEEE Trans Biomed Eng 2008;55:1733-43.
Zhang H, Chin ZY, Ang KK, Guan C, Wang C. Optimum spatio-spectral filtering network for brain-computer interface. IEEE Trans Neural Netw 2011;22:52-63.
Hjorth B. EEG analysis based on time domain properties. Electroencephalogr Clin Neurophysiol 1970;29:306-10.
Vourkas M, Papadourakis G, Micheloyannis S. Use of ANN and Hjorth parameters in mental-task discrimination. In: 2000 First International Conference Advances in Medical Signal and Information Processing, IEEE Conference Publication. IET; 2000, no. 476, Bristol, UK, p. 327-32.
Vidaurre C, Krämer N, Blankertz B, Schlögl A. Time Domain Parameters as a feature for EEG-based Brain-Computer Interfaces. Neural Netw 2009;22:1313-9.
Blankertz B, Sannelli C, Halder S, Hammer EM, Kübler A, Müller KR, et al. Neurophysiological predictor of SMR-based BCI performance. Neuroimage 2010;51:1303-9.
Shahid S, Prasad G. Bispectrum-based feature extraction technique for devising a practical brain-computer interface. J Neural Eng 2011;8:025014.
Fatourechi M, Mason SG, Birch GE, Ward RK. A wavelet-based approach for the extraction of event related potentials from EEG. In: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. IEEE; 2004. p. ii-737-40.
Ting W, Guo-zheng Y, Bang-hua Y, Hong S. EEG feature extraction based on wavelet packet decomposition for brain computer interface. Measurement 2008;41:618-25.
Coyle D, Prasad G, McGinnity TM. A time-frequency approach to feature extraction for a brain-computer interface with a comparative analysis of performance measures. EURASIP J Appl Signal Processing 2005;2005:3141-51.
Herman P, Prasad G, McGinnity TM, Coyle D. Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification. IEEE Trans Neural Syst Rehabil Eng 2008;16:317-26.
Wang T, Deng J, He B. Classifying EEG-based motor imagery tasks by means of time-frequency synthesized spatial patterns. Clin Neurophysiol 2004;115:2744-53.
Meng J, Yao L, Sheng X, Zhang D, Zhu X. Simultaneously optimizing spatial spectral features based on mutual information for EEG classification. IEEE Trans Biomed Eng 2015;62:227-40.
Cantillo-Negrete J, Carino-Escobar RI, Carrillo-Mora P, Elias-Vinas D, Gutierrez-Martinez J. Motor imagery-based brain-computer interface coupled to a robotic hand orthosis aimed for neurorehabilitation of stroke patients. J Healthc Eng 2018;2018:1624637.
Meng J, Streitz T, Gulachek N, Suma D, He B. Three-dimensional brain-computer interface control through simultaneous overt spatial attentional and motor imagery tasks. IEEE Trans Biomed Eng 2018;65:2417-27.
Tang Z chuan, Li C, Wu J feng, Liu P cheng, Cheng S wei. Classification of EEG-based single-trial motor imagery tasks using a B-CSP method for BCI. Front Inf Technol Electron Eng 2019;20:1087-98. Back to cited text no. 28
Kim YJ, Kwak NS, Lee SW. Classification of motor imagery for Ear-EEG based brain-computer interface. In: 2018 6th International Conference on Brain-Computer Interface, South Korea, IEEE; 2018. p. 1-2.
Padfield N, Zabalza J, Zhao H, Masero V, Ren J. EEG-based brain-computer interfaces using motor-imagery: Techniques and challenges. Sensors (Switzerland). 2019;19:1423.
Rodríguez-Bermúdez G, Sánchez-Granero MÁ, García-Laencina PJ, Fernández-Martínez M, Serna J, Roca-Dorda J. Testing the self-similarity exponent to feature extraction in motor imagery based brain computer interface systems. Int J Bifurc Chaos 2015;25:1540023.
Hammon PS, de Sa VR. Preprocessing and meta-classification for brain-computer interfaces. IEEE Trans Biomed Eng 2007;54:518-25. Back to cited text no. 32
Pfurtscheller G, Flotzinger D, Kalcher J. Brain-computer interface-A new communication device for handicapped persons. J Microcomput Appl 1993;16:293-9.
1st Iranian Brain Computer Interface Competition Was Held at NBML on December; 2017. Available from: https://nbml.ir/en/posts/1st-iranian-brain-computer-interface-competition-was-held-at-nbml-on-december-2017-.
Aghdam NS, Moradi MH, Shamsollahi MB, Nasrabadi AM, Setarehdan SK, Shalchyan V, et al. The 2017 and 2018 Iranian brain-computer interface competitions. J Med Signals Sens 2020;10:208-16.
BCI Competition IV - Final Results. Available from: http://www.bbci.de/competition/iv/results/index.html.
Yu H, Lu H, Wang S, Xia K, Jiang Y, Qian P. A general common spatial patterns for EEG analysis with applications to vigilance detection. IEEE Access 2019;7:111102-14.
Meng J, Liu G, Huang G, Zhu X. Automated selecting subset of channels based on CSP in motor imagery brain-computer interface system. In: 2009 IEEE International Conference on Robotics and Biomimetic, ROBIO 2009. 2009. p. 2290-4.
Higuchi T. Approach to an irregular time series on the basis of the fractal theory. Physica D: Nonlinear Phenom 1988;31:277-83.
Liu T, Yao W, Wu M, Shi Z, Wang J, Ning X. Multiscale permutation entropy analysis of electrocardiogram. Phys A Stat Mech Appl 2017;471:492-8.
Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clin Neurophysiol 1999;110:1842-57.
Qiu Z, Jin J, Lam HK, Zhang Y, Wang X, Cichocki A. Improved SFFS method for channel selection in motor imagery based BCI. Neurocomputing 2016;207:519-27.
Ge S, Wang R, Yu D. Classification of four-class motor imagery employing single-channel electroencephalography. PLoS One 2014;9:e98019.
Refbacks
- There are currently no refbacks.
https://e-rasaneh.ir/Certificate/22728
ISSN : 2228-7477