Deep learning approach for fusion of magnetic resonance imaging-positron emission tomography image based on extract image features using pretrained network (VGG19)
DOI: 10.4103/jmss.JMSS_80_20
Abstract
Keywords
Full Text:
PDFReferences
Masood S, Sharif M, Yasmin M, Shahid MA, Rehman A. Image fusion methods: A survey. J Eng Sci Tech Rev 2017;10:186-95.
Mozaffarilegha M, Yaghobi Joybari A, Mostaar A. Medical Image Fusion using bi-dimensional empirical mode decomposition (BEMD) and an Efficient Fusion Scheme. J Biomed Phys Eng 2020;10:727-36.
Sultana F, Sufian A, Dutta P. Advancements in image classification using convolutional neural network. In: Fourth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN). Kolkata, India: IEEE; 2018.
Zhou T, Ruan S, Canu S. A review: Deep learning for medical image segmentation using multi-modality fusion. Array 2019;3-4:100004.
Kuppala K, Banda S, Barige TR. An overview of deep learning methods for image registration with focus on feature-based approaches. Int J Image Data Fusion 2020;11:113-35. [doi: 10.1080/19479832.2019.1707720].
Hayat K. Multimedia super-resolution via deep learning: A survey. Digit Signal Process 2018;81:198-217.
Alipour SH, Houshyari M, Mostaar A. A novel algorithm for PET and MRI fusion based on digital curvelet transform via extracting lesions on both images. Electron Physician 2017;9:4872-9.
Amini N, Fatemizadeh E, Behnam H. MRI and PET image fusion by using curvelet transform. J Adv Comput Res 2014;5:23-30.
Amini N, Fatemizadeh E, Behnam H. MRI-PET image fusion based on NSCT transform using local energy and local variance fusion rules. J Med Eng Technol 2014;38:211-9.
Saboori A, Birjandtalab J. PET–MRI image fusion using adaptive filter based on spectral and spatial discrepancy. Signal Image Video Process 2019;13:135-43.
Ma J, Ma Y, Li C. Infrared and visible image fusion methods and applications: A survey. Inf Fusion 2019;45:153-78.
Li S, Kang X, Fang L, Hu J, Yin H. Pixel-level image fusion: A survey of the state of the art. Inf Fusion 2017;33:100-12.
Patel H, Upla K. Survey on image fusion: Hand designed to deep learning algorithms. Asian J Converg Technol (AJCT) 2019;5:1–9.
Razzak MI, Naz S, Zaib A. Deep learning for medical image processing: Overview, challenges and the future. In: Classification in BioApps. Automation of Decision Making: Springer; 2018. p. 323-50.
Khan S, Rahmani H, Shah SA, Bennamoun M, Medioni G, Dickinson S. A guide to convolutional neural networks for computer vision. Synth Lect Comput Vis 2018;8:1-207.
Shridhar K, Laumann F, Liwicki M. A comprehensive guide to bayesian convolutional neural network with variational inference. arXiv 2019;13:3-14.
George A, Routray A. Real-time eye gaze direction classification using convolutional neural network. In: International Conference on Signal Processing and Communications (SPCOM). IEEE, Bangalore, India; 2016. p. 1-5.
Liu Y, Chen X, Wang Z, Wang ZJ, Ward RK, Wang X. Deep learning for pixel-level image fusion: Recent advances and future prospects. Inf Fusion 2018;42:158-73.
Rajalingam B, Priya R. Multimodal medical image fusion based on deep learning neural network for clinical treatment analysis. Int J ChemTech Res 2018;11:160-76.
Piao J, Chen Y, Shin H. A new deep learning based multi-spectral image fusion method. Entropy (Basel) 2019;21:570.
Véstias MP. A Survey of Convolutional Neural Networks on Edge with Reconfigurable Computing. Algorithms 2019;12:154.
Sudha V, Ganeshbabu TR. A Convolutional Neural Network Classifier VGG-19 Architecture for Lesion Detection and Grading in Diabetic Retinopathy Based on Deep Learning. Comput Mater Con. 2021;66:827-842.
LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE 1998;86:2278-324.
Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: The Proceedings of the 25th International Conference on Advances in Neural Information Processing Systems. Lake Tahoe, NV: USA; 2012. p. 1097-105.
Haddadpour M, Daneshvar S, Seyedarabi H. PET and MRI image fusion based on combination of 2-D Hilbert transform and IHS method. Biomed J 2017;40:219-25.
Javed U, Riaz MM, Ghafoor A, Ali SS, Cheema TA. MRI and PET image fusion using fuzzy logic and image local features. Scientific World Journal 2014;2014:Article ID: 708075, 1-8.
Refbacks
- There are currently no refbacks.
https://e-rasaneh.ir/Certificate/22728
ISSN : 2228-7477