Low-dose cone-beam computed tomography reconstruction through a fast three-dimensional compressed sensing method based on the three-dimensional pseudo-polar fourier transform
DOI: 10.4103/jmss.jmss_114_21
Abstract
Keywords
Full Text:
PDFReferences
Hashemi S, Beheshti S, Gill PR, Paul NS, Cobbold RS. Efficient low dose X-ray CT reconstruction through sparsity-based MAP modeling. arXiv Prepr 2014;abs/1402.1801:1-10.
Zhang C, Zhang T, Li M, Peng C, Liu Z, Zheng J. Low-dose CT reconstruction via L1 dictionary learning regularization using iteratively reweighted least-squares. Biomed Eng Online 2016;15:66.
Hou W, Zhang C. Analysis of compressed sensing based CT reconstruction with low radiation. In: 2014 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS). Malaysia. IEEE; 2014. p. 291-6.
Liu L, Li X, Xiang K, Wang J, Tan S. Low-dose CBCT reconstruction using hessian schatten penalties. IEEE Trans Med Imaging 2017;36:2588-99.
Xu Q, Yu H, Mou X, Zhang L, Hsieh J, Wang G. Low-dose X-ray CT reconstruction via dictionary learning. IEEE Trans Med Imaging 2012;31:1682-97.
Bai T, Yan H, Jia X, Jiang S, Wang G, Mou X. Z-index parameterization for volumetric CT image reconstruction via 3-D dictionary learning. IEEE Trans Med Imaging 2017;36:2466-78.
Zhang H, Wang J, Ma J, Lu H, Liang Z. Statistical models and regularization strategies in statistical image reconstruction of low-dose X-ray CT : A survey. arXiv Prepr 2014;1412.1732 :1-67.
Wang AS, Stayman JW, Otake Y, Kleinszig G, Vogt S, Siewerdsen JH. Nesterov's method for accelerated penalized-likelihood statistical reconstruction for C-arm cone-beam CT. In: Image Formation in X-Ray Computed Tomography. Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571; 2014. p. 409-13.
Hashemi S, Beheshti S, Gill PR, Paul NS, Cobbold RS. Accelerated compressed sensing based CT image reconstruction. Comput Math Methods Med 2015;2015:161797.
Sukovic P, Clinthorne NH. Penalized weighted least-squares image reconstruction for dual energy X-ray transmission tomography. IEEE Trans Med Imaging 2000;19:1075-81.
Mao Y, Fahimian BP, Osher SJ, Miao J. Development and optimization of regularized tomographic reconstruction algorithms utilizing equally-sloped tomography. IEEE Trans Image Process 2010;19:1259-68.
Donoho DL, Donoho DL. Compressed sensing. IEEE Trans Inf Theory 2016;52:1289-306.
Yang Y, Liu F, Li M, Jin J, Weber E, Liu Q, et al. Pseudo-polar Fourier transform-based compressed sensing MRI. IEEE Trans Biomed Eng 2017;64:816-25.
Huang J, Zhang S, Metaxas D. Efficient MR image reconstruction for compressed MR imaging. Med Image Anal 2011;15:670-9.
Lee MS, Kim HJ, Cho HM, Hong DK, Je UK. Compressed-sensing (CS)-based 3D image reconstruction in cone-beam CT (CBCT) for low-dose, high-quality dental X-ray imaging. J Korean Phys Soc 2013;63:1066-71.
Kaldate A, Patre BM, Harsh R, Verma D. MR Image Reconstruction Based on Compressed Sensing using Poisson sampling pattern. In: 2016 Second International Conference on Cognitive Computing and Information Processing (CCIP). India: IEEE; 2016. p. 1-4.
Hashemi S, Beheshti S, Cobbold RS, Paul NS. Subband-dependent compressed sensing in local CT reconstruction. Signal Image Video Process 2016;10:1009-15.
Xu D, Huang Y, Kang JU. Volumetric (3D) compressive sensing spectral domain optical coherence tomography. Biomed Opt Express 2014;5:3921-34.
Ragab M, Omer OA, Abdel-Nasser M. Compressive sensing MRI reconstruction using empirical wavelet transform and grey wolf optimizer. Neural Comput Appl 2018;7:2705-724.
Bonnet S, Peyrin F, Turjman F, Prost R. Nonseparable wavelet-based cone-beam reconstruction in 3-D rotational angiography. IEEE Trans Med Imaging 2003;22:360-7.
Fahimian BP, Zhao Y, Huang Z, Fung R, Mao Y, Zhu C, et al. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction. Med Phys 2013;40:031914.
Matej S, Fessler JA, Kazantsev IG. Iterative tomographic image reconstruction using Fourier-based forward and back-projectors. IEEE Trans Med Imaging 2004;23:401-12.
Averbuch A, Shkolnisky Y. 3D Fourier based discrete Radon transform. Appl Comput Harmon Anal 2003;15:33-69.
Averbuch A, Shkolnisky Y. 3D discrete X-ray transform. Applied and Computational Harmonic Analysis 2004;17:259-76.
Averbuch A, Coifman RR, Donoho DL, Elad M, Israeli M. Analysis, “Fast and accurate Polar Fourier transform”. Appl Comput Harmon Anal 2006;21:145-67.
Averbuch A, Sedelnikov I, Shkolnisky Y. CT reconstruction from parallel and fan-beam projections by a 2-D discrete Radon transform. IEEE Trans Image Process 2012;21:733-41.
Keller Y, Shkolnisky Y, Averbuch A. Volume registration using the 3-D Pseudopolar Fourier transform. IEEE Trans Signal Process 2006;54:4323-31.
Teyfouri N, Rabbani H, Kafieh R, Jabbari I. “An Exact and Fast CBCT Reconstruction via Pseudo-Polar Fourier Transform-Based Discrete Grangeat's Formula.” IEEE Transactions on Image Processing 2020;29: 5832-5847.
Qiaoqiao DD, Yong L, Zhang X, Fessler JA. Statistical image reconstruction using mixed poisson-gaussian noise model for X-ray CT. arXiv 2018;1801.09533:1-11.
Thibault JB, Sauer KD, Bouman CA, Hsieh J. A three-dimensional statistical approach to improved image quality for multislice helical CT. Med Phys 2007;34:4526-44.
Wang G, Zhou J, Yu Z, Wang W, Qi J. Hybrid pre-log and post-log image reconstruction for computed tomography. IEEE Trans Med Imaging 2017;36:2457-65.
Thibault JB, Bouman CA, Sauer KD, Hsieh J. A recursive filter for noise reduction in statistical iterative tomographic imaging. Proc SPIE 2006;6065:1-10.
Bouman CA, Sauer K. A unified approach to statistical tomography using coordinate descent optimization. IEEE Trans Image Process 1996;5:480-92.
Sauer K, Bouman C. A local update strategy for iterative reconstruction from projections. IEEE Trans Signal Process1993;41:534-48.
Taylor Expansions for the Moments of Functions of Random Variables; 2019. Available from: https://en.wikipedia.org/wiki/Taylor_expansions_for_the_moments_of_functions_of_random_variables.
Zhang H, Wang J, Zeng D, Tao X, Ma J. Regularization strategies in statistical image reconstruction of low-dose x-ray CT: A review. Med Phys 2018;45:e886-907.
Peyré G. Advanced Signal, Image and Surface Processing. Université Paris-Dauphine; 2010. Available from: http://www.numerical-tours.com/book/AdvancedSignalProcessing.pdf.
Flores L, Vidal V, Verdú G. Iterative reconstruction from few-view projections. Procedia-Procedia Comput Sci 2015;51:703-12.
Ha S, Matej S, Ispiryan M, Mueller K. “GPU-Accelerated Forward and Back-Projections with Spatially Varying Kernels for 3D DIRECT TOF PET Reconstruction,” IEEE Transactions on Nuclear Science 2013;60:166-73.
Riabkov D, Xue X, Tubbs D, Cheryauka A. Accelerated cone-beam back-projection using GPU-CPU hardware, in Proc. 9th Int. Meeting Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (Fully3D '07), China; 2007. p. 68-71.
Gottlieb D. On the direct Fourier method for computer tomography. IEEE Trans Med Imaging 2000;19:223-32.
Miao J, Förster F, Levi O, Förster F, Levi O. Equally sloped tomography with oversampling reconstruction. Phys Rev B 2005;72:3-6.
Dusaussoy NJ. VOIR: A volumetric image reconstruction algorithm based on Fourier techniques for inversion of the 3-D radon transform. IEEE Trans Image Process 1996;5:121-31.
Axelsson C, Danielsson PE. Three-dimensional reconstruction from cone-beam data in O (N3 log N) time. Phys Med Biol 1994;39:477-91.
Averbuch A, Shabat G, Shkolnisky Y. Direct inversion of the 3D pseudo-polar Fourier transform. SIAM J Sci Comput 2016;38:A1100-A1120.
Beck A, Teboulle M. A Fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2009;2:183-202.
Sun T, Sun N, Wang J, Tan S. Iterative CBCT reconstruction using Hessian penalty. Phys Med Biol 2015;60:1965-87.
Hu Y, Jacob M. Higher degree total variation (HDTV) regularization for image recovery. IEEE Trans Image Process 2012;21:2559-71.
Hu Y, Ongie G, Ramani S, Jacob M. Generalized higher degree total variation (HDTV) regularization. IEEE Trans Image Process 2014;23:2423-35.
Chen B, Xiang K, Gong Z, Wang J, Tan S. Statistical Iterative CBCT Reconstruction Based on Neural Network. IEEE Trans Med Imaging 2018;37:1511-21.
Fletcher AK, Ramchandran K, Goyal VK. Wavelet denoising by recursive cycle spinning. In: International Conference on Image Processing. USA: IEEE; 2002. p. 2.
Smith D. “Compressed Sensing MRI Phantom (v1.1).” Available from: https://nl.mathworks.com/matlabcentral/fileexchange/29364-compressed-sensing-mri-phantom--v1-1-?focused=3778752&tab=function&s_tid=gn_loc_drop.
Tsutomu G, Nakajima M. Dual-energy subtraction X-ray digital tomosynthesis: Basic physical evaluation. J Med Imaging 2012;2:111-17.
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: From error visibility to structural similarity. IEEE Trans Image Process 2004;13:600-12.
Wang Z. “The SSIM Index for Image Quality Assessment. Available from: https://www.cns.nyu.edu/~lcv/ssim/ssim_index.m.”.
Smith SW. The Scientist and Engineer's Guide to Digital Signal Processing. San Diego, CA, USA: California Technical Publishing; 1997.
Wang G, Jiang M. Ordered-subset simultaneous algebraic reconstruction techniques (OS-SART). X-Ray Science and Technology 2003;12:169-177.
Sidky EY, Pan X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys Med Biol 2008;53:4777-807.
Biguri A, Dosanjh M, Hancock S, Soleimani M. TIGRE: A MATLAB-GPU toolbox for CBCT image reconstruction. Biomed Phys Eng Express 2016;2:055010.
Maier A, Hofmann HG, Berger M, Fischer P, Schwemmer C, Wu H, et al. CONRAD--a software framework for cone-beam imaging in radiology. Med Phys 2013;40:111914.
Rit S, Oliva MV, Brousmiche S, Labarbe R, Sarrut D, Sharp GC. The reconstruction toolkit (RTK), an open-source cone-beam CT reconstruction toolkit based on the insight toolkit (ITK). J Phys Conf Ser 2014;489:12079.
van Aarle W, Palenstijn WJ, De Beenhouwer J, Altantzis T, Bals S, Batenburg KJ, et al. The ASTRA toolbox: A platform for advanced algorithm development in electron tomography. Ultramicroscopy 2015;157:35-47.
Refbacks
- There are currently no refbacks.
https://e-rasaneh.ir/Certificate/22728
ISSN : 2228-7477