Low-dose cone-beam computed tomography reconstruction through a fast three-dimensional compressed sensing method based on the three-dimensional pseudo-polar fourier transform

Niloufar Teyfouri, Hossein Rabbani, I Jabbari

DOI: 10.4103/jmss.jmss_114_21

Abstract


Background: Reconstruction of high quality two dimensional images from fan beam computed tomography (CT) with a limited number of projections is already feasible through Fourier based iterative reconstruction method. However, this article is focused on a more complicated reconstruction of three dimensional (3D) images in a sparse view cone beam computed tomography (CBCT) by utilizing Compressive Sensing (CS) based on 3D pseudo polar Fourier transform (PPFT). Method: In comparison with the prevalent Cartesian grid, PPFT re gridding is potent to remove rebinning and interpolation errors. Furthermore, using PPFT based radon transform as the measurement matrix, reduced the computational complexity. Results: In order to show the computational efficiency of the proposed method, we compare it with an algebraic reconstruction technique and a CS type algorithm. We observed convergence in <20 iterations in our algorithm while others would need at least 50 iterations for reconstructing a qualified phantom image. Furthermore, using a fast composite splitting algorithm solver in each iteration makes it a fast CBCT reconstruction algorithm. The algorithm will minimize a linear combination of three terms corresponding to a least square data fitting, Hessian (HS) Penalty and l1 norm wavelet regularization. We named it PP-based compressed sensing-HS-W. In the reconstruction range of 120 projections around the 360° rotation, the image quality is visually similar to reconstructed images by Feldkamp-Davis-Kress algorithm using 720 projections. This represents a high dose reduction. Conclusion: The main achievements of this work are to reduce the radiation dose without degrading the image quality. Its ability in removing the staircase effect, preserving edges and regions with smooth intensity transition, and producing high-resolution, low-noise reconstruction results in low-dose level are also shown.

Keywords


Three-dimensional compressed sensing, three-dimensional pseudo-polar Fourier transform, cone beam computed tomography reconstruction, hessian

Full Text:

PDF

References


Hashemi S, Beheshti S, Gill PR, Paul NS, Cobbold RS. Efficient low dose X-ray CT reconstruction through sparsity-based MAP modeling. arXiv Prepr 2014;abs/1402.1801:1-10.

Zhang C, Zhang T, Li M, Peng C, Liu Z, Zheng J. Low-dose CT reconstruction via L1 dictionary learning regularization using iteratively reweighted least-squares. Biomed Eng Online 2016;15:66.

Hou W, Zhang C. Analysis of compressed sensing based CT reconstruction with low radiation. In: 2014 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS). Malaysia. IEEE; 2014. p. 291-6.

Liu L, Li X, Xiang K, Wang J, Tan S. Low-dose CBCT reconstruction using hessian schatten penalties. IEEE Trans Med Imaging 2017;36:2588-99.

Xu Q, Yu H, Mou X, Zhang L, Hsieh J, Wang G. Low-dose X-ray CT reconstruction via dictionary learning. IEEE Trans Med Imaging 2012;31:1682-97.

Bai T, Yan H, Jia X, Jiang S, Wang G, Mou X. Z-index parameterization for volumetric CT image reconstruction via 3-D dictionary learning. IEEE Trans Med Imaging 2017;36:2466-78.

Zhang H, Wang J, Ma J, Lu H, Liang Z. Statistical models and regularization strategies in statistical image reconstruction of low-dose X-ray CT : A survey. arXiv Prepr 2014;1412.1732 :1-67.

Wang AS, Stayman JW, Otake Y, Kleinszig G, Vogt S, Siewerdsen JH. Nesterov's method for accelerated penalized-likelihood statistical reconstruction for C-arm cone-beam CT. In: Image Formation in X-Ray Computed Tomography. Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571; 2014. p. 409-13.

Hashemi S, Beheshti S, Gill PR, Paul NS, Cobbold RS. Accelerated compressed sensing based CT image reconstruction. Comput Math Methods Med 2015;2015:161797.

Sukovic P, Clinthorne NH. Penalized weighted least-squares image reconstruction for dual energy X-ray transmission tomography. IEEE Trans Med Imaging 2000;19:1075-81.

Mao Y, Fahimian BP, Osher SJ, Miao J. Development and optimization of regularized tomographic reconstruction algorithms utilizing equally-sloped tomography. IEEE Trans Image Process 2010;19:1259-68.

Donoho DL, Donoho DL. Compressed sensing. IEEE Trans Inf Theory 2016;52:1289-306.

Yang Y, Liu F, Li M, Jin J, Weber E, Liu Q, et al. Pseudo-polar Fourier transform-based compressed sensing MRI. IEEE Trans Biomed Eng 2017;64:816-25.

Huang J, Zhang S, Metaxas D. Efficient MR image reconstruction for compressed MR imaging. Med Image Anal 2011;15:670-9.

Lee MS, Kim HJ, Cho HM, Hong DK, Je UK. Compressed-sensing (CS)-based 3D image reconstruction in cone-beam CT (CBCT) for low-dose, high-quality dental X-ray imaging. J Korean Phys Soc 2013;63:1066-71.

Kaldate A, Patre BM, Harsh R, Verma D. MR Image Reconstruction Based on Compressed Sensing using Poisson sampling pattern. In: 2016 Second International Conference on Cognitive Computing and Information Processing (CCIP). India: IEEE; 2016. p. 1-4.

Hashemi S, Beheshti S, Cobbold RS, Paul NS. Subband-dependent compressed sensing in local CT reconstruction. Signal Image Video Process 2016;10:1009-15.

Xu D, Huang Y, Kang JU. Volumetric (3D) compressive sensing spectral domain optical coherence tomography. Biomed Opt Express 2014;5:3921-34.

Ragab M, Omer OA, Abdel-Nasser M. Compressive sensing MRI reconstruction using empirical wavelet transform and grey wolf optimizer. Neural Comput Appl 2018;7:2705-724.

Bonnet S, Peyrin F, Turjman F, Prost R. Nonseparable wavelet-based cone-beam reconstruction in 3-D rotational angiography. IEEE Trans Med Imaging 2003;22:360-7.

Fahimian BP, Zhao Y, Huang Z, Fung R, Mao Y, Zhu C, et al. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction. Med Phys 2013;40:031914.

Matej S, Fessler JA, Kazantsev IG. Iterative tomographic image reconstruction using Fourier-based forward and back-projectors. IEEE Trans Med Imaging 2004;23:401-12.

Averbuch A, Shkolnisky Y. 3D Fourier based discrete Radon transform. Appl Comput Harmon Anal 2003;15:33-69.

Averbuch A, Shkolnisky Y. 3D discrete X-ray transform. Applied and Computational Harmonic Analysis 2004;17:259-76.

Averbuch A, Coifman RR, Donoho DL, Elad M, Israeli M. Analysis, “Fast and accurate Polar Fourier transform”. Appl Comput Harmon Anal 2006;21:145-67.

Averbuch A, Sedelnikov I, Shkolnisky Y. CT reconstruction from parallel and fan-beam projections by a 2-D discrete Radon transform. IEEE Trans Image Process 2012;21:733-41.

Keller Y, Shkolnisky Y, Averbuch A. Volume registration using the 3-D Pseudopolar Fourier transform. IEEE Trans Signal Process 2006;54:4323-31.

Teyfouri N, Rabbani H, Kafieh R, Jabbari I. “An Exact and Fast CBCT Reconstruction via Pseudo-Polar Fourier Transform-Based Discrete Grangeat's Formula.” IEEE Transactions on Image Processing 2020;29: 5832-5847.

Qiaoqiao DD, Yong L, Zhang X, Fessler JA. Statistical image reconstruction using mixed poisson-gaussian noise model for X-ray CT. arXiv 2018;1801.09533:1-11.

Thibault JB, Sauer KD, Bouman CA, Hsieh J. A three-dimensional statistical approach to improved image quality for multislice helical CT. Med Phys 2007;34:4526-44.

Wang G, Zhou J, Yu Z, Wang W, Qi J. Hybrid pre-log and post-log image reconstruction for computed tomography. IEEE Trans Med Imaging 2017;36:2457-65.

Thibault JB, Bouman CA, Sauer KD, Hsieh J. A recursive filter for noise reduction in statistical iterative tomographic imaging. Proc SPIE 2006;6065:1-10.

Bouman CA, Sauer K. A unified approach to statistical tomography using coordinate descent optimization. IEEE Trans Image Process 1996;5:480-92.

Sauer K, Bouman C. A local update strategy for iterative reconstruction from projections. IEEE Trans Signal Process1993;41:534-48.

Taylor Expansions for the Moments of Functions of Random Variables; 2019. Available from: https://en.wikipedia.org/wiki/Taylor_expansions_for_the_moments_of_functions_of_random_variables.

Zhang H, Wang J, Zeng D, Tao X, Ma J. Regularization strategies in statistical image reconstruction of low-dose x-ray CT: A review. Med Phys 2018;45:e886-907.

Peyré G. Advanced Signal, Image and Surface Processing. Université Paris-Dauphine; 2010. Available from: http://www.numerical-tours.com/book/AdvancedSignalProcessing.pdf.

Flores L, Vidal V, Verdú G. Iterative reconstruction from few-view projections. Procedia-Procedia Comput Sci 2015;51:703-12.

Ha S, Matej S, Ispiryan M, Mueller K. “GPU-Accelerated Forward and Back-Projections with Spatially Varying Kernels for 3D DIRECT TOF PET Reconstruction,” IEEE Transactions on Nuclear Science 2013;60:166-73.

Riabkov D, Xue X, Tubbs D, Cheryauka A. Accelerated cone-beam back-projection using GPU-CPU hardware, in Proc. 9th Int. Meeting Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (Fully3D '07), China; 2007. p. 68-71.

Gottlieb D. On the direct Fourier method for computer tomography. IEEE Trans Med Imaging 2000;19:223-32.

Miao J, Förster F, Levi O, Förster F, Levi O. Equally sloped tomography with oversampling reconstruction. Phys Rev B 2005;72:3-6.

Dusaussoy NJ. VOIR: A volumetric image reconstruction algorithm based on Fourier techniques for inversion of the 3-D radon transform. IEEE Trans Image Process 1996;5:121-31.

Axelsson C, Danielsson PE. Three-dimensional reconstruction from cone-beam data in O (N3 log N) time. Phys Med Biol 1994;39:477-91.

Averbuch A, Shabat G, Shkolnisky Y. Direct inversion of the 3D pseudo-polar Fourier transform. SIAM J Sci Comput 2016;38:A1100-A1120.

Beck A, Teboulle M. A Fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2009;2:183-202.

Sun T, Sun N, Wang J, Tan S. Iterative CBCT reconstruction using Hessian penalty. Phys Med Biol 2015;60:1965-87.

Hu Y, Jacob M. Higher degree total variation (HDTV) regularization for image recovery. IEEE Trans Image Process 2012;21:2559-71.

Hu Y, Ongie G, Ramani S, Jacob M. Generalized higher degree total variation (HDTV) regularization. IEEE Trans Image Process 2014;23:2423-35.

Chen B, Xiang K, Gong Z, Wang J, Tan S. Statistical Iterative CBCT Reconstruction Based on Neural Network. IEEE Trans Med Imaging 2018;37:1511-21.

Fletcher AK, Ramchandran K, Goyal VK. Wavelet denoising by recursive cycle spinning. In: International Conference on Image Processing. USA: IEEE; 2002. p. 2.

Smith D. “Compressed Sensing MRI Phantom (v1.1).” Available from: https://nl.mathworks.com/matlabcentral/fileexchange/29364-compressed-sensing-mri-phantom--v1-1-?focused=3778752&tab=function&s_tid=gn_loc_drop.

Tsutomu G, Nakajima M. Dual-energy subtraction X-ray digital tomosynthesis: Basic physical evaluation. J Med Imaging 2012;2:111-17.

Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: From error visibility to structural similarity. IEEE Trans Image Process 2004;13:600-12.

Wang Z. “The SSIM Index for Image Quality Assessment. Available from: https://www.cns.nyu.edu/~lcv/ssim/ssim_index.m.”.

Smith SW. The Scientist and Engineer's Guide to Digital Signal Processing. San Diego, CA, USA: California Technical Publishing; 1997.

Wang G, Jiang M. Ordered-subset simultaneous algebraic reconstruction techniques (OS-SART). X-Ray Science and Technology 2003;12:169-177.

Sidky EY, Pan X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys Med Biol 2008;53:4777-807.

Biguri A, Dosanjh M, Hancock S, Soleimani M. TIGRE: A MATLAB-GPU toolbox for CBCT image reconstruction. Biomed Phys Eng Express 2016;2:055010.

Maier A, Hofmann HG, Berger M, Fischer P, Schwemmer C, Wu H, et al. CONRAD--a software framework for cone-beam imaging in radiology. Med Phys 2013;40:111914.

Rit S, Oliva MV, Brousmiche S, Labarbe R, Sarrut D, Sharp GC. The reconstruction toolkit (RTK), an open-source cone-beam CT reconstruction toolkit based on the insight toolkit (ITK). J Phys Conf Ser 2014;489:12079.

van Aarle W, Palenstijn WJ, De Beenhouwer J, Altantzis T, Bals S, Batenburg KJ, et al. The ASTRA toolbox: A platform for advanced algorithm development in electron tomography. Ultramicroscopy 2015;157:35-47.


Refbacks

  • There are currently no refbacks.


 

  https://e-rasaneh.ir/Certificate/22728

https://e-rasaneh.ir/

ISSN : 2228-7477