Brain Tumor Segmentation Using Graph Coloring Approach in Magnetic Resonance Images
DOI: 10.4103/jmss.JMSS_43_20
Abstract
Keywords
Full Text:
PDFReferences
Bauer S, Wiest R, Nolte LP, Reyes M. A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol 2013;58:R97-129.
Zhao X, Wu Y, Song G, Li Z, Zhang Y, Fan Y. A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med Image Anal 2018;43:98-111.
Goetz M, Weber C, Binczyk F, Polanska J, Tarnawski R, Bobek-Billewicz B, et al. DALSA: Domain adaptation for supervised learning from sparsely annotated MR images. IEEE Trans Med Imaging 2016;35:184-96.
Goetz M, Weber C, Bloecher J, Stieltjes B, Meinzer HP, Maier-Hein K. Extremely randomized trees based brain tumor segmentation. Proceeding of BRATS challenge-MICCAI. 2014 Sep 14:006-11.
Allahverdi A, Akbarzadeh S, Moghaddam AK, Allahverdy A. Differentiating Tumor and Edema in Brain Magnetic Resonance Images Using a Convolutional Neural Network. Front Biomed Technol 2018;5:44-50.
Kapur T, Eric W, Grimson L, Kikinis R, Wells WM. Enhanced spatial priors for segmentation of magnetic resonance imagery. InInternational Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Berlin, Heidelberg. 1998. p. 457-468.
Bullmore E, Brammer M, Rouleau G, Everitt B, Simmons A, Sharma T, et al. Computerized brain tissue classification of magnetic resonance images: A new approach to the problem of partial volume artifact. Neuroimage 1995;2:133-47.
Atlason HE, Love A, Sigurdsson S, Gudnason V, Ellingsen LM. SegAE: Unsupervised white matter lesion segmentation from brain MRIs using a CNN autoencoder. Neuroimage Clin 2019;24:102085.
Juan-Albarracín J, Fuster-Garcia E, Manjón JV, Robles M, Aparici F, Martí-Bonmatí L, et al. Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification. PLoS One 2015;10:e0125143.
Thakur GK, Priya B, Pawan Kumar S. A novel fuzzy graph theory-based approach for image representation and segmentation via graph coloring. J Appl Secur Res 2019;14:74-87.
Gómez D, Montero J, Yáñez J, Poidomani C. A graph coloring approach for image segmentation. Omega 2007;35:173-83.
Yáñez J, Muñoz S, Montero J. Graph coloring inconsistencies in image segmentation. In Computational Intelligence In Decision And Control 2008. p. 435-40.
Makrogiannis S, Economou G, Fotopoulos S, Bourbakis NG. Segmentation of color images using multiscale clustering and graph theoretic region synthesis. IEEE Trans Syst Man Cybern A Syst Hum 2005;35:224-38.
Yuan X, Guo J, Hao X, Chen H. Traffic sign detection via graph-based ranking and segmentation algorithms. IEEE Trans Syst Man Cybern Syst 2015;45:1509-21.
Chang H, Chen Z, Huang Q, Shi J, Li X. Graph-based learning for segmentation of 3D ultrasound images. Neurocomputing. 2015;151:632-44.
Chen X, Pan L. A survey of graph cuts/graph search based medical image segmentation. IEEE Rev Biomed Eng 2018;11:112-24.
Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 2015;34:1993-2024.
Mehta RC, Pike GB, Haros SP, Enzmann DR. Central nervous system tumor, infection, and infarction: Detection with gadolinium-enhanced magnetization transfer MR imaging. Radiology 1995;195:41-6.
Farjam R, Parmar HA, Noll DC, Tsien CI, Cao Y. An approach for computer-aided detection of brain metastases in post-Gd T1-W MRI. Magn Reson Imaging 2012;30:824-36.
Refbacks
- There are currently no refbacks.
https://e-rasaneh.ir/Certificate/22728
ISSN : 2228-7477