Investigating the Dosimetric Characteristics of Microbeam Radiation Treatment

Mansour Zabihzadeh, Atefeh Rabiei, Hojattollah Shahbazian, Sasan Razmjoo

DOI: 10.4103/jmss.JMSS_12_19

Abstract


Background: High-radiation therapeutic gain could be achieved by the modern technique of microbeam radiation treatment (MRT). The aim of this study was to investigate the dosimetric properties of MRT. Methods: The EGSnrc Monte Carlo (MC) code system was used to transport photons and electrons in MRT. The mono-energetic beams (1 cm × 1 cm array) of 50, 100, and 150 keV and the spectrum photon beam (European Synchrotron Radiation Facility [ESRF]) were modeled to transport through multislit collimators with the aperture's widths of 25 and 50  and the center-to-center (c-t-c) distance between two adjacent microbeams (MBs) of 200 . The calculated phase spaces at the upper surface of water phantom (1 cm × 1 cm) were implemented in DOSXYZnrc code to calculate the percentage depth dose (PDD), the dose profile curves (in depths of 0-1, 1-2, and 3-4 cm), and the peak-to-valley dose ratios (PVDRs). Results: The PDD, dose profile curves, and PVDRs were calculated for different effective parameters. The more flatness of lateral dose profile was obtained for the ESRF spectrum MB. With constant c-t-c distance, an increase in the MB size increased the peak and valley dose; simultaneously, the PVDR was larger for the 25  MB (33.5) compared to 50 MB (21.9) beam, due to the decreased scattering photons followed to the lower overlapping of the adjacent MBs. An increase in the depth decreased the PVDRs (i.e., 54.9 in depth of 0-1 cm). Conclusion: Our MC model of MRT successfully calculated the effect of dosimetric parameters including photon's energy, beam width, and depth to estimate the dose distribution.

Keywords


Dosimetry, microbeam radiation treatment, Monte Carlo simulation

Full Text:

PDF

References


Ron E. Ionizing radiation and cancer risk: Evidence from epidemiology. Radiat Res 1998;150:S30-41.

Kumar S. Second malignant neoplasms following radiotherapy. Int J Environ Res Public Health 2012;9:4744-59.

Cardinale RM, Benedict SH, Wu Q, Zwicker RD, Gaballa HE, Mohan R. A comparison of three stereotactic radiotherapy techniques; ARCS vs. noncoplanar fixed fields vs. intensity modulation. Int J Radiat Oncol Biol Phys 1998;42:431-6.

Barth RF, Coderre JA, Vicente MG, Blue TE. Boron neutron capture therapy of cancer: Current status and future prospects. Clin Cancer Res 2005;11:3987-4002.

Phillips MH, Stelzer KJ, Griffin TW, Mayberg MR, Winn HR. Stereotactic radiosurgery: A review and comparison of methods. J Clin Oncol 1994;12:1085-99.

Zindler JD, Bruynzeel AM, Eekers DB, Hurkmans CW, Swinnen A, Lambin P. Whole brain radiotherapy versus stereotactic radiosurgery for 4-10 brain metastases: A phase III randomised multicentre trial. BMC Cancer 2017;17:500.

Monteiro AR, Hill R, Pilkington GJ, Madureira PA. The role of hypoxia in glioblastoma invasion. Cells 2017;6:45.

Han X, Xue X, Zhou H, Zhang G. A molecular view of the radioresistance of gliomas. Oncotarget 2017;8:100931-41.

Kagan AR, Steckel RJ, Cancilla P, Juillard G, Patin T. The pathogenesis of brain necrosis: Time and dose parameters. Int J Radiat Oncol Biol Phys 1976;1:729-32.

Behin A, Hoang-Xuan K, Carpentier AF, Delattre JY. Primary brain tumours in adults. Lancet 2003;361:323-31.

Lawrence YR, Li XA, el Naqa I, Hahn CA, Marks LB, Merchant TE, et al. Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys 2010;76:S20-7.

Curtis HJ. The use of deuteron microbeam for simulating the biological effects of heavy cosmic-ray particles. Radiat Res Suppl 1967;7:250-7.

Smyth LM, Day LR, Woodford K, Rogers PA, Crosbie JC, Senthi S. Identifying optimal clinical scenarios for synchrotron microbeam radiation therapy: A treatment planning study. Phys Med 2019;60:111-9.

Grotzer MA, Schültke E, Bräuer-Krisch E, Laissue JA. Microbeam radiation therapy: Clinical perspectives. Phys Med 2015;31:564-7.

Siegbahn EA, Stepanek J, Brauer-Krisch E, Bravin A. Determination of dosimetrical quantities used in microbeam radiation therapy (MRT) with Monte Carlo simulations. Med Phys 2006;33:3248-59.

Brauer-Krisch E, Requardt H, Brochard T, Berruyer G, Renier M, Laissue JA, et al. New technology enables high precision multislit collimators for microbeam radiation therapy. Rev Sci Instrum 2009;80:074301.

Orion I, Rosenfeld AB, Dilmanian FA, Telang F, Ren B, Namito Y. Monte Carlo simulation of dose distributions from a synchrotron-produced microplanar beam array using the EGS4 code system. Phys Med Biol 2000;45:2497-508.

Slatkin DN, Spanne P, Dilmanian FA, Gebbers JO, Laissue JA. Subacute neuropathological effects of microplanar beams of X-rays from a synchrotron wiggler. Proc Natl Acad Sci U S A 1995;92:8783-7.

Regnard P, Le Duc G, Brauer-Krisch E, Tropres I, Siegbahn EA, Kusak A, et al. Irradiation of intracerebral 9L gliosarcoma by a single array of microplanar X-ray beams from a synchrotron: Balance between curing and sparing. Phys Med Biol 2008;53:861-78.

Laissue JA, Lyubimova N, Wagner HP, Archer DW, Slatkin DN, Di Michiel M, et al. Microbeam radiation therapy. Denver, Colarado: Proceedings of SPIE-The International Society for Optical Engineering; 3770. p. 38-45.

Dilmanian FA, Button TM, Le Duc G, Zhong N, Pena LA, Smith JA, et al. Response of rat intracranial 9L gliosarcoma to microbeam radiation therapy. Neuro Oncol 2002;4:26-38. Back to cited text no. 21

Serduc R, van de Looij Y, Francony G, Verdonck O, van der Sanden B, Laissue J, et al. Characterization and quantification of cerebral edema induced by synchrotron X-ray microbeam radiation therapy. Phys Med Biol 2008;53:1153-66.

Smilowitz HM, Blattmann H, Brauer-Krisch E, Bravin A, Di Michiel M, Gebbers JO, et al. Synergy of gene-mediated immunoprophylaxis and microbeam radiation therapy for advanced intracerebral rat 9L gliosarcomas. J Neurooncol 2006;78:135-43.

Bouchet A, Sakakini N, El Atifi M, Le Clec'h C, Brauer E, Moisan A, et al. Early gene expression analysis in 9L orthotopic tumor-bearing rats identifies immune modulation in molecular response to synchrotron microbeam radiation therapy. PLoS One 2013;8:e81874.

Crosbie JC, Anderson RL, Rothkamm K, Restall CM, Cann L, Ruwanpura S, et al. Tumor cell response to synchrotron microbeam radiation therapy differs markedly from cells in normal tissues. Int J Radiat Oncol Biol Phys 2010;77:886-94.

Autsavapromporn N, Suzuki M, Funayama T, Usami N, Plante I, Yokota Y, et al. Gap junction communication and the propagation of bystander effects induced by microbeam irradiation in human fibroblast cultures: The impact of radiation quality. Radiat Res 2013;180:367-75.

Bräuer-Krisch E, Bravin A, Lerch M, Rosenfeld A, Stepanek J, Di Michiel M, et al. MOSFET dosimetry for microbeam radiation therapy at the European Synchrotron Radiation Facility. Med Phys 2003;30:583-9.

Archer J, Li E, Davis J, Cameron M, Rosenfeld A, Lerch M. High spatial resolution scintillator dosimetry of synchrotron microbeams. Sci Rep 2019;9:6873.

Sharma SD. Challenges of small photon field dosimetry are still challenging. J Med Phys 2014;39:131-2.

Bartzsch S, Corde S, Crosbie JC, Day L, Donzelli M, Krisch M, et al. Technical advances in x-ray microbeam radiation therapy. Phys Med Biol 2020;65:02TR01.

Slatkin DN, Spanne P, Dilmanian FA, Sandborg M. Microbeam radiation therapy. Med Phys 1992;19:1395-400.

Stepanek J, Blattmann H, Laissue JA, Lyubimova N, Di Michiel M, Slatkin DN. Physics study of microbeam radiation therapy with PSI-version of Monte Carlo code GEANT as a new computational tool. Med Phys 2000;27:1664-75.

Spiga J, Siegbahn EA, Brauer-Krisch E, Randaccio P, Bravin A. The GEANT4 toolkit for microdosimetry calculations: Application to microbeam radiation therapy (MRT). Med Phys 2007;34:4322-30.

Schreiber EC, Chang SX. Monte Carlo simulation of a compact microbeam radiotherapy system based on carbon nanotube field emission technology. Med Phys 2012;39:4669-78. Back to cited text no. 34

Kawrakow I. Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. Med Phys 2000;27:485-98.

De Felici M, Felici R, Sanchez del Rio M, Ferrero C, Bacarian T, Dilmanian FA. Dose distribution from x-ray microbeam arrays applied to radiation therapy: An EGS4 Monte Carlo study. Med Phys 2005;32:2455-63.

Siegbahn E, Brauer-Krisch E, Stepanek J, Blattmann H, Laissue J, Bravin A. Dosimetric studies of microbeam radiation therapy (MRT) with Monte Carlo simulations. Nucl Instrum Methods Phys Res 2005;548:54-8.


Refbacks

  • There are currently no refbacks.


 

  https://e-rasaneh.ir/Certificate/22728

https://e-rasaneh.ir/

ISSN : 2228-7477