Bone Age Assessment of Iranian Children in an Automatic Manner
DOI: 10.4103/jmss.JMSS_9_20
Abstract
Keywords
Full Text:
PDFReferences
Moradi M, Sirous M, Morovatti P. The reliability of skeletal age determination in an Iranian sample using Greulich and Pyle method. Forensic Sci Int 2012;223:e1-372. e4.
Greulich WW, Pyle SI, Todd TW. Radiographic atlas of skeletal development of the hand and wrist: Stanford University Press; 1959.
Tanner J, Healy MJ, Goldstein H, Cameron N. Assessment of Skeletal Maturity and Prediction of Adult Height. Philadelphia: TW3 Method Saunders; 2001.
De Sanctis V, Soliman AT, Di Maio S, Bedair S. Are the new automated methods for bone age estimation advantageous over the manual approaches? Pediatr Endocrinol Rev 2014;12:200-5.
Satoh M. Bone age: Assessment methods and clinical applications. Clin Pediatr Endocrinol 2015;24:143-52.
Dehghani F, Karimian A, Sirous M. Assessing the bone age of children in an automatic manner newborn to 18 years range. J Digit Imaging 2020;33:399-407.
Gertych A, Zhang A, Sayre J, Pospiech-Kurkowska S, Huang HK. Bone age assessment of children using a digital hand atlas. Comput Med Imaging Graph 2007;31:322-31.
Perona P, Malik M. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 1990;12:629-39.
Guraksin GE, Uguz H, Baykan OK. Bone age determination in young children (newborn to 6 years old) using support vector machines. Turk J Electr Eng Comput Sci 2016;24:1693-708.
Wang Q, Yang J. Eye detection in facial images with unconstrained background. J Pattern Recognit Res 2006;1:55-62.
Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vis 2004;60:91-110.
Dalal N, Triggs B. Histograms of oriented gradients for human detection. In2005; In2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05); 2005;1:886-893.
Ojala T, Pietikainen M, Maenpaa T. Gray scale and rotation invariant texture classification with local binary patterns. In: European Conference on Computer Vision. Berlin, Heidelberg: Springer; 2000.
Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 2002;7:971-87.
Houam L, Hafiane A, Boukrouche A, Lespessailles E, Jennane R. One dimensional local binary pattern for bone texture characterization. Pattern Anal Appl 2014;17:179-93.
Lingras P, Butz C. Rough set based 1-v-1 and 1-vr approaches to support vector machine multi-classification. Inf Sci 2007;177:3782-98.
Perrizo W, Ding Q, Denton A. Lazy Classifiers Using p-Trees. CAINE; 2002.
Sokolova M, Lapalme G. A systematic analysis of performance measures for classification tasks. Inf Proce Manage 2009;45:427-37.
Kashif M, Deserno TM, Haak D, Jonas S. Feature description with SIFT, SURF, BRIEF, BRISK, or FREAK? A general question answered for bone age assessment. Comput Biol Med 2016;68:67-75.
Refbacks
- There are currently no refbacks.
https://e-rasaneh.ir/Certificate/22728
ISSN : 2228-7477