A Hybrid Dynamic Wavelet-Based Modeling Method for Blood Glucose Concentration Prediction in Type 1 Diabetes
DOI: 10.4103/jmss.JMSS_62_19
Abstract
Keywords
Full Text:
PDFReferences
Hall JE. Guyton and Hall Textbook of Medical Physiology. 13rd ed. Philadelphia, PA: Elsevier; 2016. p. 19, 1145.
Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 2018;138:271-81.
Schlienger JL. Complications du diabete de type 2. La Presse Medicale 2013;42:839-48.
Fattah H, Vallon V. The potential role of SGLT2 inhibitors in the treatment of type 1 diabetes mellitus. Drugs 2018;78:717-26.
Smith B, Sarver JG, Fournier RL. A comparison of islet transplantation and subcutaneous insulin injections for the treatment of diabetes mellitus. Comput Biol Med 1991;21:417-27.
Wong XW. Model-Based Therapeutics for Type 1 Diabetes Mellitus. 2008.
Das S, Nath A, Dey R, Chaudhury S, editors. Glucose regulation in diabetes patients via insulin pump: A feedback linearisation approach. In: Innovations in Infrastructure. Singapore: Springer; 2019.
Copp DA, Gondhalekar R, Hespanha JP. Simultaneous model predictive control and moving horizon estimation for blood glucose regulation in Type 1 diabetes. Optim Contr Appl Met 2018;39:904-18.
Zhang R, Xue A, Gao F. Model predictive control under constraints. In: Model Predictive Control: Approaches Based on the Extended State Space Model and Extended Non-minimal State Space Model. Singapore: Springer Singapore; 2019. p. 59-63.
Zhang S. Wavelet Adaptive and Predictive Control with Applications to Chemical Looping System [Dissertation]. Mechanical Engineering: University of Illinois at Urbana-Champaign; 2014.
Shi D, Dassau E, Doyle FJ. Adaptive Zone Model Predictive Control of Artificial Pancreas Based on Glucose- and Velocity-Dependent Control Penalties. IEEE Trans Biomed Eng 2019;66:1045-54.
Srinivasan C, Meenatchisundaram S, George VJJoARiD, Systems C. Design and Realization of MPC Controller for Type 1 Diabetes System. J Dyn Control Syst 2018;10:1-8.
Laguna Sanz AJ, Doyle FJ 3rd, Dassau E. An Enhanced Model Predictive Control for the Artificial Pancreas Using a Confidence Index Based on Residual Analysis of Past Predictions. J Diabetes Sci Technol 2017;11:537-44. Back to cited text no. 13
Nimri R, Audon P, Pinsker JE, Dassau E. Closing the Loop. Diabetes Technol Ther 2018;20:S41-54.
Stahl F, Johansson R. Diabetes mellitus modeling and short-term prediction based on blood glucose measurements. Math Biosci 2009;217:101-17.
Oviedo S, Vehi J, Calm R, Armengol J. A review of personalized blood glucose prediction strategies for T1DM patients. Int J Numer Method Biomed Eng 2017;33:e2833.
Solomatine D, See LM, Abrahart RJ. Data-Driven Modelling: Concepts, Approaches and Experiences. In: Abrahart RJ, See LM, Solomatine DP, editors. Practical Hydroinformatics: Computational Intelligence and Technological Developments in Water Applications. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008. p. 17-30.
Contreras I, Oviedo S, Vettoretti M, Visentin R, Vehi J. Personalized blood glucose prediction: A hybrid approach using grammatical evolution and physiological models. PLoS One 2017;12:e0187754.
Dalla Man C, Camilleri M, Cobelli C. A system model of oral glucose absorption: Validation on gold standard data. IEEE Trans Biomed Eng 2006;53:2472-8.
Dalla Man C, Raimondo DM, Rizza RA, Cobelli C. GIM, simulation software of meal glucose-insulin model. J Diabetes Sci Technol 2007;1:323-30.
Zecchin C. Online Glucose Prediction in Type-1 Diabetes by Neural Network Models; 2014.
Ben Ali J, Hamdi T, Fnaiech N, Di Costanzo V, Fnaiech F, Ginoux JM. Continuous blood glucose level prediction of type 1 diabetes based on artificial neural network. Biocybern Biomed Eng 2018;38:828-40.
Quchani SA, Tahami E, editors. Comparison of MLP and Elman Neural Network for Blood Glucose Level Prediction in Type 1 Diabetics. Berlin, Heidelberg: Springer Berlin Heidelberg; 2007.
Baghdadi G, Nasrabadi AM. Controlling blood glucose levels in diabetics by neural network predictor. Conf Proc IEEE Eng Med Biol Soc 2007;2007:3216-9.
Zecchin C, Facchinetti A, Sparacino G, Cobelli C. Jump neural network for online short-time prediction of blood glucose from continuous monitoring sensors and meal information. Comput Methods Programs Biomed 2014;113:144-52.
Zekri M, Sadri S, Sheikholeslam F. Adaptive fuzzy wavelet network control design for nonlinear systems. Fuzzy Sets Syst. 2008;159:2668-95.
Zhang Q, Benveniste A. Wavelet networks. IEEE Trans Neural Netw 1992;3:889-98.
Billings SA, Wei HL. A new class of wavelet networks for nonlinear system identification. IEEE Trans Neural Netw 2005;16:862-74.
Zainuddin Z, Pauline O, Ardil CJ. A neural network approach in predicting the blood glucose level for diabetic patients. Int J Comput Intell 2009;5:72-9.
Elleri D, Allen JM, Kumareswaran K, Leelarathna L, Nodale M, Caldwell K, et al. Closed-loop basal insulin delivery over 36 hours in adolescents with type 1 diabetes: Randomized clinical trial. Diabetes Care 2013;36:838-44.
Man CD, Micheletto F, Lv D, Breton M, Kovatchev B, Cobelli C. The UVA/PADOVA Type 1 Diabetes Simulator: New Features. J Diabetes Sci Technol 2014;8:26-34.
Zecchin C, Facchinetti A, Sparacino G, De Nicolao G, Cobelli C. Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration. IEEE Trans Biomed Eng 2012;59:1550-60.
Bock A, Francois G, Gillet D. A therapy parameter-based model for predicting blood glucose concentrations in patients with type 1 diabetes. Comput Methods Programs Biomed 2015;118:107-23.
Dalla Man C, Rizza RA, Cobelli C. Meal simulation model of the glucose-insulin system. IEEE Trans Biomed Eng 2007;54:1740-9.
Billings SA. Nonlinear system identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains: Chichester, UK: John Wiley & Sons; 2013.
Georga EI, Protopappas VC, Polyzos D, Fotiadis DI. Evaluation of short-term predictors of glucose concentration in type 1 diabetes combining feature ranking with regression models. Med Biol Eng Comput 2015;53:1305-18.
Garcia-Garcia F, Hovorka R, Wilinska ME, Elleri D, Hernando ME. Modelling the effect of insulin on the disposal of meal-attributable glucose in type 1 diabetes. Med Biol Eng Comput 2017;55:271-82.
Dankers A, Hof PM, Bombois X, Heuberger PS. Identification of dynamic models in complex networks with prediction error methods: Predictor input selection. IEEE Trans Automat Contr 2016;61:937-52.
Korenberg M, Billings SA, Liu YP, McIlroy PJ. Orthogonal parameter estimation algorithm for non-linear stochastic systems. Int J Contr 1988;48:193-210.
Mao KZ, Billings SA. Algorithms for minimal model structure detection in nonlinear dynamic system identification. Int J Contr 1997;68:311-30.
Madar J, Abonyi J, Szeifert F. Genetic programming for the identification of nonlinear input – Output models. Ind Eng Chem Res 2005;44:3178-86.
Kharazihai Isfahani M, Zekri M, Marateb HR, Mananas MA. Fuzzy jump wavelet neural network based on rule induction for dynamic nonlinear system identification with real data applications. PLoS One 2019;14:e0224075.
Berger M, Rodbard D. Computer simulation of plasma insulin and glucose dynamics after subcutaneous insulin injection. Diabetes Care 1989;12:725-36.
Lehmann ED, Deutsch T. A physiological model of glucose-insulin interaction in type 1 diabetes mellitus. J Biomed Eng 1992;14:235-42.
Sadri AR, Zekri M, Sadri S, Gheissari N, Mokhtari M, Kolahdouzan F. Segmentation of Dermoscopy Images Using Wavelet Networks. IEEE Trans Bio-Med Eng 2013;60:1134-41.
Sparacino G, Zanderigo F, Corazza S, Maran A, Facchinetti A, Cobelli C. Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series. IEEE Trans Biomed Eng 2007;54:931-7.
Del Favero S, Facchinetti A, Cobelli C. A glucose-specific metric to assess predictors and identify models. IEEE Trans Biomed Eng 2012;59:1281-90. Back to cited text no. 48
Ma Y, Mazumdar M, Memtsoudis SG. Beyond repeated-measures analysis of variance: Advanced statistical methods for the analysis of longitudinal data in anesthesia research. Reg Anesth Pain Med 2012;37:99-105.
Vermeulen KM, Post WJ, Span MM, van der Bij W, Koeter GH, Ten Vergert EM. Incomplete quality of life data in lung transplant research: Comparing cross sectional, repeated measures ANOVA, and multi-level analysis. Respir Res 2005;6:101.
Refbacks
- There are currently no refbacks.
https://e-rasaneh.ir/Certificate/22728
ISSN : 2228-7477