The Measurement of Thyroid Absorbed dose by Gafchromic™ EBT2 Film and Changes in Thyroid Hormone Levels Following Radiotherapy in Patients with Breast Cancer

Leyla Ansari, Neda Nasiri, Fahimeh Aminolroayaei, Karim Ghazikhanlou Sani, Masoumeh Dorri-Giv, Razzagh Abedi-Firouzjah, Dariush Sardari

DOI: 10.4103/jmss.JMSS_10_19

Abstract


Background: Radiotherapy is a main method for the treatment of breast cancer. This study aimed to measure the absorbed dose of thyroid gland using Gafchromic EBT2 film during breast cancer radiotherapy. In addition, the relationship between the absorbed dose and thyroid hormone levels was evaluated. Methods: Forty-six breast cancer patients, with the age ranged between 25 and 35 years, undergoing external radiotherapy were studied. The patients were treated with 6 and 18 MV X-ray beams, and the absorbed thyroid dose was measured by EBT2 film. Thyroid hormone levels, thyroid-stimulating hormone (TSH), triiodothyronine (T3), and thyroxin (T4), were measured before and after the radiotherapy. Pearson's, Spearman's, and Chi-square tests were performed to evaluate the correlation between the thyroid dose and hormone levels. Results: The mean thyroid dose was 26 ± 9.45 cGy with the range of 7.85-48.35 cGy. There were not any significant differences at thyroid hormone levels between preradiotherapy and postradiotherapy (P > 0.05). There was a significant relationship between increased thyroid absorbed dose and changes in TSH and T4 levels (P < 0.05), but it was not significant in T3 level (P = 0.1). Conclusion: Regarding the results, the thyroid absorbed dose can have an effect on its function. Therefore, the thyroid gland should be considered as an organ at risk in breast cancer radiotherapy.


Keywords


Breast cancer, Gafchromic film, radiotherapy, thyroid gland

Full Text:

PDF

References


Firouzjah RA, Banaei A, Farhood B, Bakhshandeh M. Dosimetric comparison of four different techniques for supraclavicular irradiation in 3D-conformal radiotherapy of breast cancer. Health Phys 2019;116:631-6. Back to cited text no. 1

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136:E359-86. Back to cited text no. 2

Chandwani KD, Perkins G, Nagendra HR, Raghuram NV, Spelman A, Nagarathna R, et al. Randomized, controlled trial of yoga in women with breast cancer undergoing radiotherapy. J Clin Oncol 2014;32:1058-65. Back to cited text no. 3

Abdi Goushbolagh N, Abedi Firouzjah R, Ebrahimnejad Gorji K, Khosravanipour M, Moradi S, Banaei A, et al. Estimation of radiation dose-reduction factor for cerium oxide nanoparticles in MRC-5 human lung fibroblastic cells and MCF-7 breast-cancer cells. Artif Cells Nanomed Biotechnol 2018;46:S1215-25. Back to cited text no. 4

Brown LC, Mutter RW, Halyard MY. Benefits, risks, and safety of external beam radiation therapy for breast cancer. Int J Womens Health 2015;7:449-58. Back to cited text no. 5

Jensen PT, Groenvold M, Klee MC, Thranov I, Petersen MA, Machin D. Longitudinal study of sexual function and vaginal changes after radiotherapy for cervical cancer. Int J Radiat Oncol Biol Phys 2003;56:937-49. Back to cited text no. 6

Lee B, Lee S, Sung J, Yoon M. Radiotherapy-induced secondary cancer risk for breast cancer: 3D conformal therapy versus IMRT versus VMAT. J Radiol Prot 2014;34:325-31. Back to cited text no. 7

Schonfeld SJ, Lee C, Berrington de González A. Medical exposure to radiation and thyroid cancer. Clin Oncol (R Coll Radiol) 2011;23:244-50. Back to cited text no. 8

van Asselen B, Raaijmakers CP, Hofman P, Lagendijk JJ. An improved breast irradiation technique using three-dimensional geometrical information and intensity modulation. Radiother Oncol 2001;58:341-7. Back to cited text no. 9

ICRU, “Prescribing, Recording and Reporting Photon Beam Therapy,” Report 50, International Commission on Radiation Units and Measurements, Bethesda, Md, USA, 1999. Back to cited text no. 10

Kourinou KM, Mazonakis M, Lyraraki E, Stratakis J, Damilakis J. Scattered dose to radiosensitive organs and associated risk for cancer development from head and neck radiotherapy in pediatric patients. Phys Med 2013;29:650-5. Back to cited text no. 11

Abedi Firouzjah R, Nickfarjam A, Bakhshandeh M, Farhood B. The use of EBT3 film and Delta4 for the dosimetric verification of EclipseTM treatment planning system in a heterogeneous chest phantom: An IMRT technique. Int J Radiat Res 2019;17:355-61. Back to cited text no. 12

Chandraraj V, Stathakis S, Manickam R, Esquivel C, Supe SS, Papanikolaou N. Comparison of four commercial devices for rapidArc and sliding window IMRT QA. J Appl Clin Med Phys 2011;12:3367. Back to cited text no. 13

Massillon JL, Muñoz-Molina ID, Díaz-Aguirre P. Optimum absorbed dose versus energy response of Gafchromic EBT2 and EBT3 films exposed to 20–160 kV X-rays and 60Co gamma. Biomed Phys Eng Express 2016;2:045005. Back to cited text no. 14

Abedi Firouzjah R, Nickfarjam A, Bakhshandeh M. A comparison between GafchromicTM EBT3 film and Delta4® phantom in IMRT technique of a heterogeneous chest phantom. SSU J 2018;26:177-87. Back to cited text no. 15

Alterio D, Jereczek-Fossa BA, Franchi B, D'Onofrio A, Piazzi V, Rondi E, et al. Thyroid disorders in patients treated with radiotherapy for head-and-neck cancer: A retrospective analysis of seventy-three patients. Int J Radiat Oncol Biol Phys 2007;67:144-50. Back to cited text no. 16

Jung H, Kum O, Han Y, Park B, Cheong KH. Photon beam dosimetry with EBT3 film in heterogeneous regions: Application to the evaluation of dose-calculation algorithms. J Korean Phys Soc 2014;65:1829-38. Back to cited text no. 17

Sim GS, Wong JH, Ng KH. The use of radiochromic EBT2 film for the quality assurance and dosimetric verification of 3D conformal radiotherapy using microtek scanMaker 9800XL flatbed scanner. J Appl Clin Med Phys 2013;14:4182. Back to cited text no. 18

El Barouky J, Fournier-Bidoz N, Mazal A, Fares G, Rosenwald JC. Practical use of gafchromic(®) EBT films in electron beams for in-phantom dose distribution measurements and monitor units verification. Phys Med 2011;27:81-8. Back to cited text no. 19

Aland T, Kairn T, Kenny J. Evaluation of a gafchromic EBT2 film dosimetry system for radiotherapy quality assurance. Australas Phys Eng Sci Med 2011;34:251-60. Back to cited text no. 20

Arjomandy B, Tailor R, Anand A, Sahoo N, Gillin M, Prado K, et al. Energy dependence and dose response of gafchromic EBT2 film over a wide range of photon, electron, and proton beam energies. Med Phys 2010;37:1942-7. Back to cited text no. 21

Niroomand-Rad A, Blackwell CR, Coursey BM, Gall KP, Galvin JM, McLaughlin WL, et al. Radiochromic film dosimetry: Recommendations of AAPM radiation therapy committee task group 55. American Association of Physicists in medicine. Med Phys 1998;25:2093-115. Back to cited text no. 22

Devic S. Radiochromic film dosimetry: Past, present, and future. Phys Med 2011;27:122-34. Back to cited text no. 23

Cox JD, Stetz J, Pajak TF. Toxicity criteria of the radiation therapy oncology group (RTOG) and the European organization for research and treatment of cancer (EORTC) Int J Radiat Oncol Biol Phys 1995;31:1341-6. Back to cited text no. 24

Lassmann M, Reiners C, Luster M. Dosimetry and thyroid cancer: The individual dosage of radioiodine. Endocr Relat Cancer 2010;17:R161-72. Back to cited text no. 25

Momeni Z, Tavakoli MB, Atarod M. Estimation of the thyroid secondary cancer risk on the patient of standard breast external beam radiotherapy. J Med Signals Sens 2018;8:238-43.

Mentzel T, Schildhaus HU, Palmedo G, Büttner R, Kutzner H. Postradiation cutaneous angiosarcoma after treatment of breast carcinoma is characterized by MYC amplification in contrast to atypical vascular lesions after radiotherapy and control cases: Clinicopathological, immunohistochemical and molecular analysis of 66 cases. Mod Pathol 2012;25:75-85. Back to cited text no. 27

Egan KM, Lawson JA, Fries S, Koller B, Rader DJ, Smyth EM, et al. COX-2-derived prostacyclin confers atheroprotection on female mice. Science 2004;306:1954-7. Back to cited text no. 28

Stewart FA, Heeneman S, Te Poele J, Kruse J, Russell NS, Gijbels M, et al. Ionizing radiation accelerates the development of atherosclerotic lesions in apoE-/- mice and predisposes to an inflammatory plaque phenotype prone to hemorrhage. Am J Pathol 2006;168:649-58. Back to cited text no. 29

Yoden E, Soejima T, Maruta T, Demizu Y, Nishimura H, Ejima Y, et al. Hypothyroidism after radiotherapy to the neck. Nihon Igaku Hoshasen Gakkai Zasshi Nippon Acta Radiol 2004;64:146-50. Back to cited text no. 30

Kuten A, Lubochitski R, Fishman G, Dale J, Stein ME. Postradiotherapy hypothyroidism: Radiation dose response and chemotherapeutic radiosensitization at less than 40 gy. J Surg Oncol 1996;61:281-3. Back to cited text no. 31

Hancock SL, McDougall IR, Constine LS. Thyroid abnormalities after therapeutic external radiation. Int J Radiat Oncol Biol Phys 1995;31:1165-70. Back to cited text no. 32

Tunio MA, Al Asiri M, Bayoumi Y, Stanciu LG, Al Johani N, Al Saeed EF. Is thyroid gland an organ at risk in breast cancer patients treated with locoregional radiotherapy? Results of a pilot study. J Cancer Res Ther 2015;11:684-9. Back to cited text no. 33


Refbacks

  • There are currently no refbacks.


 

  https://e-rasaneh.ir/Certificate/22728

https://e-rasaneh.ir/

ISSN : 2228-7477