Evaluation of Dose Rate and Photon Energy Dependence of Gafchromic EBT3 Film Irradiating with 6 MV and Co-60 Photon Beams
DOI: 10.4103/jmss.JMSS_45_18
Abstract
Gafchromic films are utilized for two-dimensional dose distribution measurements, especially in radiotherapy. In this study, we investigated a close connection between energy and dose rate of Gafchromic EBT3 films irradiating with 6 MV and Co-60 photon beams over a broad dose range. EBT3 films were exposed to 6 MV and Co-60 photon beams using 4 and 2 Gy/min dose rates over a 10-400 cGy dose range. The films were scanned in red, green, and blue channels to obtain the optical density (OD)-dose curves. The OD-dose curves resulted from three-color scans for different photon energies and dose rates were compared by statistical independent t-test. For the radiations of Co-60 and 6 MV photon beams, the highest correlation was obtained between the 2 and 4 Gy/min dose rates with red and green channels, respectively. Moreover, the red channel had a greater OD response per dose value, following the green and blue channels. There was no significant difference between different photon energies' (Co-60 and 6 MV) and dose rates' (2 and 4 Gy/min) dependence on OD-dose response of EBT3 films over a broad domain of radiation dose, except for different photon energies in the blue channel. Our results revealed that the OD-dose response of EBT3 films is independent on photon energies (Co-60 and 6 MV) and dose rate (2 and 4 Gy/min) in the evaluated dose range (10-400 cGy). Therefore, the EBT3 films are suitable, consistent, and reliable instruments for dose measurements in radiotherapy.
Keywords
Full Text:
PDFReferences
Khan FM, Gibbons JP. Khan's the Physics of Radiation Therapy. 5th ed. Philadelphia, USA: Wolters Kluwer; 2014.
Abdi Goushbolagh N, Abedi Firouzjah R, Ebrahimnejad Gorji K, Khosravanipour M, Moradi S, Banaei A, et al. Estimation of radiation dose-reduction factor for cerium oxide nanoparticles in MRC-5 human lung fibroblastic cells and MCF-7 breast-cancer cells. Artif Cells Nanomedicine Biotechnol. 2018. p. 1-11.
Arjomandy B, Tailor R, Anand A, Sahoo N, Gillin M, Prado K, et al. Energy dependence and dose response of Gafchromic EBT2 film over a wide range of photon, electron, and proton beam energies. Med Phys 2010;37:1942-7.
Massillon JL, Muñoz-Molina ID, Díaz-Aguirre P. Optimum absorbed dose versus energy response of gafchromic EBT2 and EBT3 films exposed to 20–160 kV x-rays and 60Co gamma. Biomed Phys Eng Express 2016;2:045005.
Jung H, Kum O, Han Y, Park B, Cheong KH. Photon beam dosimetry with EBT3 film in heterogeneous regions: Application to the evaluation of dose-calculation algorithms. J Korean Phys Soc 2014;65:1829-38.
Sim GS, Wong JH, Ng KH. The use of radiochromic EBT2 film for the quality assurance and dosimetric verification of 3D conformal radiotherapy using microtek scanMaker 9800XL flatbed scanner. J Appl Clin Med Phys 2013;14:4182.
El Barouky J, Fournier-Bidoz N, Mazal A, Fares G, Rosenwald JC. Practical use of gafchromic(®) EBT films in electron beams for in-phantom dose distribution measurements and monitor units verification. Phys Med 2011;27:81-8.
Massillon JL, Chiu-Tsao ST, Domingo-Muñoz I, Chan MF. Energy dependence of the new gafchromic EBT3 film: dose response curves for 50 kV, 6 and 15 MV X-ray beams. Int J Med Phys Clin Eng Radiation Oncol 2012;1:60.
Villarreal-Barajas JE, Khan RF. Energy response of EBT3 radiochromic films: Implications for dosimetry in kilovoltage range. J Appl Clin Med Phys 2014;15:4439.
Casanova Borca V, Pasquino M, Russo G, Grosso P, Cante D, Sciacero P, et al. Dosimetric characterization and use of GAFCHROMIC EBT3 film for IMRT dose verification. J Appl Clin Med Phys 2013;14:4111.
Musolino SV. Absorbed dose determination in external beam radiotherapy: An international code of practice for dosimetry based on standards of absorbed dose to water; technical reports series No. 398. Health Phys 2001;81:592-3.
Garchromic EBT Films - GAFchromicTM [Internet]. Available from: http://www.gafchromic.com/gafchromic-film/radiotherapy-films/EBT/index.asp. [Last cited on 2019 Feb 05].
PTW: Acrylic and RW3 Slab Phantoms [Internet]. Available from: https://www.ptw.de/acrylic_and_rw3_slab_phantoms0.html?&cId=3335%255C%2522. [Last cited on 2019 Feb 05].
Devic S. Radiochromic film dosimetry: Past, present, and future. Phys Med 2011;27:122-34.
Chandraraj V, Stathakis S, Manickam R, Esquivel C, Supe SS, Papanikolaou N, et al. Comparison of four commercial devices for rapidArc and sliding window IMRT QA. J Appl Clin Med Phys 2011;12:3367.
Hussein M, Rowshanfarzad P, Ebert MA, Nisbet A, Clark CH. A comparison of the gamma index analysis in various commercial IMRT/VMAT QA systems. Radiother Oncol 2013;109:370-6.
Buonamici FB, Compagnucci A, Marrazzo L, Russo S, Bucciolini M. An intercomparison between film dosimetry and diode matrix for IMRT quality assurance. Med Phys 2007;34:1372-9.
Hardcastle N, Basavatia A, Bayliss A, Tomé WA. High dose per fraction dosimetry of small fields with gafchromic EBT2 film. Med Phys 2011;38:4081-5.
Larraga-Gutierrez JM, Garcia-Hernandez D, Garcia-Garduno OA, Galvan de la Cruz OO, Ballesteros-Zebadua P, Esparza-Moreno KP, et al. Evaluation of the gafchromic(®) EBT2 film for the dosimetry of radiosurgical beams. Med Phys 2012;39:6111-7.
Sorriaux J, Kacperek A, Rossomme S, Lee JA, Bertrand D, Vynckier S, et al. Evaluation of gafchromic® EBT3 films characteristics in therapy photon, electron and proton beams. Phys Med 2013;29:599-606.
Reinhardt S, Hillbrand M, Wilkens JJ, Assmann W. Comparison of gafchromic EBT2 and EBT3 films for clinical photon and proton beams. Med Phys 2012;39:5257-62.
Lewis D, Micke A, Yu X, Chan MF. An efficient protocol for radiochromic film dosimetry combining calibration and measurement in a single scan. Med Phys 2012;39:6339-50.
Andrés C, del Castillo A, Tortosa R, Alonso D, Barquero R. A comprehensive study of the gafchromic EBT2 radiochromic film. A comparison with EBT. Med Phys 2010;37:6271-8.
Devic S, Seuntjens J, Sham E, Podgorsak EB, Schmidtlein CR, Kirov AS, et al. Precise radiochromic film dosimetry using a flat-bed document scanner. Med Phys 2005;32:2245-53.
Chiu-Tsao ST, Duckworth T, Zhang C, Patel NS, Hsiung CY, Wang L, et al. Dose response characteristics of new models of GAFCHROMIC films: Dependence on densitometer light source and radiation energy. Med Phys 2004;31:2501-8.
Brown TA, Hogstrom KR, Alvarez D, Matthews KL, Ham K, Dugas JP. Dose-response curve of EBT, EBT2, and EBT3 radiochromic films to synchrotron-produced monochromatic x-ray beams. Med Phys. 2012;39:7412-7.
Refbacks
- There are currently no refbacks.
https://e-rasaneh.ir/Certificate/22728
ISSN : 2228-7477