Estimation of Absorbed Dose of the Thyroid Gland in Patients Undergoing 64-Slice Head Computed Tomography and Comparison the Results with ImPACT Software and Computed Tomography Scan Dose Index

Asghar Maziar, Reza Paydar, Ghazal Azadbakht, Daryoush Shahbazi-Gahrouei

DOI: 10.4103/jmss.JMSS_40_18

Abstract


Thyroid exposure to radiation in brain computed tomography (CT) scan is of great value since it is considered as a vital organ. This study aimed to investigate the absorbed dose of thyroid by various protocols of head CT in patients referring to 64-slice CT scan center and to compare the values with the calculated dose by imaging performance and assessment of CT (ImPACT) method. Also, the values of CT scan dose index (CTDI) were calculated with semiconductor detector. In this cross-sectional study, 120 outpatients including three groups of forty individuals over 40 years old referring to the hospital radiology centers in Tehran for head CT were chosen and 3 thermo-luminescence dosimeter (TLD-GR200) were applied on thyroid gland of each patient. For brain CT, Absorbed and effective doses of thyroid gland were calculated by ImPACT software. In addition, semiconductor detector in head CTDI phantom calculated CTDI for the applied protocols. Mean effective dose of thyroid gland in brain scan group was calculated by TLD and ImPACT software which showed no significant difference (P < 0.001). Mean effective dose of thyroid gland in unidirectional and bi-directional sinus scan by TLD and ImPACT software were different significantly (P < 0.001). Also, the differences between CTDI values shown by brain and sinus scan protocol with semiconductor detector and those CTDI were significant (P < 0.001). The calculated values of absorbed dose and effective doses of thyroid by TLD and ImPACT software were not significantly different. Mean effective dose calculated for thyroid gland in head scans by TLD and ImPACT was less than the annual permissive level for thyroid gland suggested by International Committee on Radiological Protection. In this study, calculated values of thyroid effective dose in brain scan with 64-slice scanner were less than the calculated values in a similar study.


Keywords


64-slice computed tomography, absorbed dose, computed tomography scan dose index, dose calculation, thermoluminescent dosimeter, thyroid cancer

Full Text:

PDF

References


Ng KH, Rassiah P, Wang HB, Hambali AS, Muthuvellu P, Lee HP, et al. Doses to patients in routine X-ray examinations in Malaysia. Br J Radiol 1998;71:654-60.

Shahbazi-Gahrouei D, Ayat S. Comparison of three methods of calculation, experimental and Monte Carlo simulation in investigation of organ doses (thyroid, sternum, cervical vertebra) in radioiodine therapy. J Med Signals Sens 2012;2:149-52.

Shahbazi-Gahrouei D, Cheki M, Moslehi M. Assessment of organ absorbed dose in patients following bone scan with technetium-99m-labeled methylene diphosphonate (MDP) using of MIRD method. Eur J Nucl Med Mol Imaging 2013;40:S402.

Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973-2002. JAMA 2006;295:2164-7.

Liu YQ, Zhang SQ, Chen WQ, Chen LL, Zhang SW, Zhang XD, et al. Trend of incidence and mortality on thyroid cancer in China during 2003 – 2007. Zhonghua Liu Xing Bing Xue Za Zhi 2012;33:1044-8.

Zeng H, Zheng R, Guo Y, Zhang S, Zou X, Wang N, et al. Cancer survival in China, 2003-2005: A population-based study. Int J Cancer 2015;136:1921-30.

Aliasgharzadeh A, Shahbazi-Gahrouei D, Fahimeh A. Radiation cancer risk from doses to newborn infants hospitalized in neonatal intensive care units in children hospitals of Isfahan province. Int J Radiat Res 2018;16:117-22.

Zhu C, Zheng T, Kilfoy BA, Han X, Ma S, Ba Y, et al. A birth cohort analysis of the incidence of papillary thyroid cancer in the United States, 1973-2004. Thyroid 2009;19:1061-6.

Schonfeld SJ, Lee C, Berrington de González A. Medical exposure to radiation and thyroid cancer. Clin Oncol (R Coll Radiol) 2011;23:244-50.

Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, et al. Solid cancer incidence in atomic bomb survivors: 1958-1998. Radiat Res 2007;168:1-64.

Bouzarjomehri F, Zare MH, Shahbazi-Gahrouei D. Patient dose resulting from CT examinations in Yazd, Iran. Iran J Radiat Res 2006;4:121-7.

ICRP, Eckerman K, Harrison J, Menzel HG, Clement CH. ICRP publication 119: Compendium of dose coefficients based on ICRP publication 60. Ann ICRP 2012;41 Suppl 1:1-30.

Mazonakis M, Tzedakis A, Damilakis J, Gourtsoyiannis N. Thyroid dose from common head and neck CT examinations in children: Is there an excess risk for thyroid cancer induction? Eur Radiol 2007;17:1352-7.

Sadeghiany T, Malayeri B, Hashemi H, Sharafi A. Evaluation CT dose of children in conventional and quality control index in a CT scan system. Med Phys 2006;2:31.

Khosravi M, Shahbazi-Gahrouei D, Jabbari K, Nasri-Nasrabadi M, Baradaran-Ghahfarokhi M, Siavashpour Z, et al. Photoneutron contamination from an 18 MV saturne medical linear accelerator in the treatment room. Radiat Prot Dosimetry 2013;156:356-63.

Gu J, Dorgu A, Xu XG. Comparison of main software packages for CT dose reporting. Health Phys 2008;95:S50.

Sharifian S, Shahbazi-Gahrouei D. Dose assessment in multidetector computed tomography (CT) of polymethylmethacrylate (PMMA) phantom using American Association of Physicists in Medicine-Task Group Report No. 111 (AAPM-TG111). J Isfahan Med Sch 2017;35:200-5.

Rydberg J, Buckwalter KA, Caldemeyer KS, Phillips MD, Conces DJ Jr. Aisen AM, et al. Multisection CT: Scanning techniques and clinical applications. Radiographics 2000;20:1787-806.

Smallridge RC, Ain KB, Asa SL, Bible KC, Brierley JD, Burman KD, et al. American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid 2012;22:1104-39.

Akpochafor MO, Omojola AD, Habeebu MY, Ezike JC, Adeneye SO, Ekpo ME, et al. Computed tomography organ dose determination using ImPACT simulation software: Our findings in South-West Nigeria. Eurasian J Med Oncol 2018;2:165-72.

Jaffe TA, Hoang JK, Yoshizumi TT, Toncheva G, Lowry C, Ravin C, et al. Radiation dose for routine clinical adult brain CT: Variability on different scanners at one institution. AJR Am J Roentgenol 2010;195:433-8.

Zammit-Maempel I, Chadwick CL, Willis SP. Radiation dose to the lens of eye and thyroid gland in paranasal sinus multislice CT. Br J Radiol 2003;76:418-20.

Diekmann S, Siebert E, Juran R, Roll M, Deeg W, Bauknecht HC, et al. Dose exposure of patients undergoing comprehensive stroke imaging by multidetector-row CT: Comparison of 320-detector row and 64-detector row CT scanners. AJNR Am J Neuroradiol 2010;31:1003-9.

Fujii K, Aoyama T, Yamauchi-Kawaura C, Koyama S, Yamauchi M, Ko S, et al. Radiation dose evaluation in 64-slice CT examinations with adult and paediatric anthropomorphic phantoms. Br J Radiol 2009;82:1010-8.

Changizi V, Mohammadi F, Ali E. Investigating and comparing safety level of thyroid and eye effective radiation dose in cranial multi slice CT scans. J Payavard Salamat 2018;11:532-40.


Refbacks

  • There are currently no refbacks.


 

  https://e-rasaneh.ir/Certificate/22728

https://e-rasaneh.ir/

ISSN : 2228-7477