Nonlinear Analysis of Electroencephalogram Signals while Listening to the Holy Quran

Mahsa Vaghefi, Ali Motie Nasrabadi, Seyed Mohammad Reza Hashemi Golpayegani, Mohammad Reza Mohammadi, Shahriar Gharibzadeh

DOI: 10.4103/jmss.JMSS_37_18

Abstract


Background: Electrical activity of the brain, resulting from electrochemical signaling between neurons, is recorded by electroencephalogram (EEG). The neural network has complex behavior at different levels that strongly confirms the nonlinear nature of interactions in the human brain. This study has been designed and implemented with the aim of determining the effects of religious beliefs and the effect of listening to Holy Quran on electrical activity of the brain of the Iranian Persian-speaking Muslim volunteers. Methods: The brain signals of 47 Persian-speaking Muslim volunteers while listening to the Holy Quran consciously, and while listening to the Holy Quran and the Arabic text unconsciously were used. Therefore, due to the nonlinear nature of EEG signals, these signals are studied using approximate entropy, sample entropy, Hurst exponent, and Detrended Fluctuation Analysis. Results: Statistical analysis of the results has shown that listening to the Holy Quran consciously increases approximate entropy and sample entropy, and decreases Hurst Exponent and Detrended Fluctuation Analysis compared to other cases. Conclusion: Consciously listening to the Holy Quran decreases self-similarity and correlation of brain signal and instead increases complexity and dynamicity in the brain.


Keywords


Electroencephalogram; Holy Quran; nonlinear analysis

Full Text:

PDF

References


Pritchard WS, Duke DW. Measuring chaos in the brain: A tutorial review of nonlinear dynamical EEG analysis. Int J Neurosci 1992;67:31-80.

van der Heyden MJ, Velis DN, Hoekstra BP, Pijn JP, van Emde Boas W, van Veelen CW, et al. Non-linear analysis of intracranial human EEG in temporal lobe epilepsy. Clin Neurophysiol 1999;110:1726-40.

Natarajan K, Acharya U R, Alias F, Tiboleng T, Puthusserypady SK. Nonlinear analysis of EEG signals at different mental states. Biomed Eng Online 2004;3:7.

Acharya U R, Faust O, Kannathal N, Chua T, Laxminarayan S. Non-linear analysis of EEG signals at various sleep stages. Comput Methods Programs Biomed 2005;80:37-45.

Pijn JP, Velis DN, van der Heyden MJ, DeGoede J, van Veelen CW, Lopes da Silva FH, et al. Nonlinear dynamics of epileptic seizures on basis of intracranial EEG recordings. Brain Topogr 1997;9:249-70.

Aftanas LI, Lotova NV, Koshkarov VI, Pokrovskaja VL, Popov SA, Makhnev VP, et al. Non-linear analysis of emotion EEG: Calculation of Kolmogorov entropy and the principal lyapunov exponent. Neurosci Lett 1997;226:13-6.

Lee YJ, Zhu YS, Xu YH, Shen MF, Zhang HX, Thakor NV, et al. Detection of non-linearity in the EEG of schizophrenic patients. Clin Neurophysiol 2001;112:1288-94.

Seybold KS. Physiological mechanisms involved in religiosity/spirituality and health. J Behav Med 2007;30:303-9.

Alhouseini AM, Al-Shaikhli IF, Rahman AW, Alarabi K, Dzulkifli MA. Stress assessment while listening to Quran recitation. In: International Conference on Computer Assisted System in Health. Kuala Lumpur; 2014. p. 67-72.

Zaidah QR, Imaduddin M. Listening to the Quran recitations: Does it affect psychophysiological measures of emotion? Adv Soc Sci Educ Hum Res 2017;133:299-305.

Nayef EG, Wahab MN. The effect of recitation Quran on the human emotions. Int J Acad Res Bus Soc Sci 2018;8:50-70.

Al-Galal SA, Alshaikhli IF, Rahman AW, Dzulkifli MA. EEG-based emotion recognition while listening to Quran recitation compared with relaxing music using valence-arousal model. In: 4th International Conference on Advanced Computer Science Applications and Technologies (ACSAT). Kuala Lumpur; 2015. p. 245-50.

Salleh NA, Lim KS, Ibrahim F. AR modeling as EEG spectral analysis on prostration. International Conference for Technical Postgraduates (TECHPOS). Kuala Lumpur; 2009. p. 1-4.

Julianto V, Etsem MB. The effect of reciting holy Quran toward Short-term memory ability analysed trought the changing brain wave. J Psikologi 2011;38:17-29.

Kamal NF, Mahmood NH, Zakaria NA. Modeling brain activities during reading working memory task: Comparison between reciting Quran and reading book. Procedia Soc Behav Sci 2013;97:83-9.

Alshaikhli IF, Yahya SA, Pammusu I, Alarabi KF. A study on the effects of EEG and ECG signals while listening to Qur'an recitation. In: The 5th International Conference on Information and Communication Technology for the Muslim World (ICT4M). Kuching; 2014. p. 1-6.

Nasir SA, Mahmud WM. Brain signal analysis using different types of music. Int J Integr Eng 2015;7:31-6.

Al-Galal SA, Alshaikhli IF. Analyzing brainwaves while listening to quranic recitation compared with listening to music based on EEG signals. Int J Perceptive Cogn Comput 2017;3:1-5.

Fattouh A. An emotional model based on wavelet coherence analysis of EEG recordings. BVICAMs Int J Inf Technol 2016;8:1023-8.

Alsolamy ML. An Emotional BCI during Listening to Quran. Master's Thesis. Faculty of Computing and Information Technology King Abdulaziz University Jeddah-Saudi Arabia; 2016.

Ardabili KM, Rostami R, Kazemi R. Electrophysiological correlates of listening to the recitation of Quran. Shefaye Khatam 2018;6:69-81.

Lindenthal JJ, Myers JK, Pepper MP, Stern MS. Mental status and religious behavior. J Sci Stud Relig 1970;9:143-9.

Pfeifer S, Waelty U. Psychopathology and religious commitment – A controlled study. Psychopathology 1995;28:70-7.

Murphy J. The Power of Your Subconscious Mind. New York: Bantam Books 1982.

Jiayi G, Peng Z, Xin Z, Mingshi W. Sample entropy analysis of sleep EEG under different stages. In: IEEE/ICME, International Conference on Complex Medical Engineering; 2007. p. 1499-502.

Lake DE, Richman JS, Griffin MP, Moorman JR. Sample entropy analysis of neonatal heart rate variability. Am J Physiol Regul Integr Comp Physiol 2002;283:R789-97.

Radhakrishnan N, Gangadhar BN. Estimating regularity in epileptic seizure time-series data. A complexity-measure approach. IEEE Eng Med Biol Mag 1998;17:89-94.

Abasolo D, Escudero J, Hornero R, Gomez C, Espino P. Approximate entropy and auto mutual information analysis of the electroencephalogram in Alzheimer's disease patients. Med Biol Eng Comput 2008;46:1019-28.

Sheng H, Chen YQ, Qiu TS. Multifractional property analysis of human sleep EEG signals. Int J Bifurcat Chaos 2012;22:1250080.

Joseph P, Kannathal N, Puthusserypady SK, Acharya UR. Complex electroencephalogram dynamics during meditation. J Chin Clin Med 2007;2:220-3.

Stam CJ, Montez T, Jones BF, Rombouts SA, van der Made Y, Pijnenburg YA, et al. Disturbed fluctuations of resting state EEG synchronization in alzheimer's disease. Clin Neurophysiol 2005;116:708-15.

Watters PA. Fractal structure in the electroencephalogram. Complexity International, 1998; 5. Available from: http:// www.complexity.org.au/ci/vol05/watters/watters.html.

Kantz H, Schreiber T. Nonlinear Time Series Analysis. Cambridge, England: Cambridge University Press; 1997.

Ma Y, Shi W, Peng CK, Yang AC. Nonlinear dynamical analysis of sleep electroencephalography using fractal and entropy approaches. Sleep Med Rev 2018;37:85-93.

Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A 1991;88:2297-301.

Pincus SM. Assessing serial irregularity and its implications for health. Ann N Y Acad Sci 2001;954:245-67.

Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 2000;278:H2039-49.

Abásolo D, Hornero R, Espino P, Alvarez D, Poza J. Entropy analysis of the EEG background activity in Alzheimer's disease patients. Physiol Meas 2006;27:241-53.

Hurst H. Long term storage capacity of reservoirs. Trans Am Soc Civil Eng 1951;116:770-99.

Akay M. Nonlinear Biomedical Signal Processing: Dynamic Analysis and Modeling. Vol. 2. New York: Wiley-IEEE Press; 2000.

Mandelbrot B, Wallis JR. Robustness of the rescaled range R/S in the measurement of noncyclic long-run statistical dependence. Water Resour Res 1969;5:967-88.

Peng CK, Buldyrev SV, Goldberger AL, Havlin S, Sciortino F, Simons M, et al. Long-range correlations in nucleotide sequences. Nature 1992;356:168-70.

Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 1995;5:82-7.

Rodriguez E, Echeverria JC, Ramirez JA. Detrended fluctuation analysis of heart intrabeat dynamics. Physica A 2007;384:429-38.

Montesinos L, Castaldo R, Pecchia L. On the use of approximate entropy and sample entropy with centre of pressure time-series. J Neuroeng Rehabil 2018;15:116.

Schmidt LA, Trainor LJ. Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions. Cogn Emot 2001;15:487-500.

Karthick NG, Ahamed VI, Joseph KP. Music and the EEG: A study using nonlinear methods. In: IEEE International Conference on Biomedical and Pharmaceutical Engineering; 2006. p. 424-7.

Kristoufek L. Rescaled range analysis and detrended fluctuation analysis: Finite sample properties and confidence intervals. Czech Econ Rev 2010;4:315-29.

Linkenkaer-Hansen K, Nikouline VV, Palva JM, Ilmoniemi RJ. Long-range temporal correlations and scaling behavior in human brain oscillations. J Neurosci 2001;21:1370-7.

Castiglioni P. Self-similarity in Physiological Time Series: New Perspectives from the Temporal Spectrum of Scale Exponents. In: International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics 2011. p. 164-75.

Vaghefi M, Nasrabadi AM, Golpayegani SM, Mohammadi MR, Gharibzadeh S. Spirituality and brain waves. J Med Eng Technol 2015;39:153-8.

Frih B, Mkacher W, Bouzguenda A, Jaafar H, ALkandari SA, Ben Salah Z, et al. Effects of listening to holy Qur'an recitation and physical training on dialysis efficacy, functional capacity, and psychosocial outcomes in elderly patients undergoing haemodialysis. Libyan J Med 2017;12:1372032.

Nayef EG, Wahab MN. The effects of different reciting styles of Quran on emotions among university students. Int J Acad Res Bus Soc Sci 2018;8:37-59.

Damayanti DS, Ismail D, Warsiti W. The effect of listening to Murottal Qur'an on the oxygen saturation level in preterm infants in the neonatal intensive care unit. Belitung Nurs J 2018;4:457-61.

Mahjoob M, Nejati J, Hosseini A, Bakhshani NM. The effect of holy Quran voice on mental health. J Relig Health 2016;55:38-42.

Fattouh A, Albidewi IA, Baterfi B. EEG-based emotion recognition of Quran listeners. In: 3rd International Conference on Computing for Sustainable Global Development (INDIACom); 2016.

Rabbani N, Sadeghi G, Sherbaf S. Brain signal analysis by complex system dynamics. In: International Conference Electrical Engineering. Tehran; 2016.

Vysata O, Schatz M, Kopal J, Burian J, Procházka A, Jiri K, et al. Non-linear EEG measures in meditation. J Biomed Sci Eng 2014;7:731-8.

Sarkar A, Barat P. Effect of meditation on scaling behavior and complexity of human heart rate variability. Fractals 2008;16:199-208.

Kantz H, Kurths J, Kress GM. Nonlinear Analysis of Physiological Data. Berlin: Springer; 1998.

Pradhan N, Rapp PE, Sreenivasan R. Nonlinear Dynamics and Brain Functioning. New York: Nova Science Publishers; 1999.


Refbacks

  • There are currently no refbacks.


 

  https://e-rasaneh.ir/Certificate/22728

https://e-rasaneh.ir/

ISSN : 2228-7477