Pencil‑Beam Fluence Evaluation Based on Monte Carlo Simulations Algorithm of High Energetic Treatment Photons

Hossam Donya

DOI: 10.4103/jmss.JMSS_48_17

Abstract


The accurate calculation of doses during external radiotherapy sessions is necessary. Recently,
the models used for this purpose have been the point kernel, pencil‑beam, and collapsed
cone superposition/convolution combination models. In this study, it is aimed to determine
point/pencil‑beam kernels to be used in dose calculations. For this purpose, tallying pencil‑beam
fluence based on Monte Carlo (MC) simulations is investigated by scoring a volume of interest
centered in a cubic water phantom at a depth of 10 cm and the irradiated feld of 10 cm × 10 cm.
The fluence is calculated for each mono‑energetic photon ranging from 0.25–6 MV at increments
of 250 keV. The output of the four fluence kernels along the depth Z around the central axis is
categorized for both the primary and secondary photons and electrons. Here, a database for
pencil‑beam kernels is established for each category. For validation purposes, other MC simulations
are carried out for fluence calculations as produced by the predetermined poly‑energetic spectra for a
Varian 6 MV linear accelerator. The net results show a good ft of the two convoluted fluence spectra
quantities for both mono‑energetic and poly‑energetics‑based simulations except little singular peaks.


Keywords


Electron fluence, Monte Carlo simulation, pencil‑beam kernel, photon fluence, solid‑state dosimeters

Full Text:

PDF

References


Tilly D, Ahnesjo A. Fast dose algorithm for generation of dose coverage probability for robustness analysis of fractionated radiotherapy. Phys Med Biol 2015;60:5439-54.

Carvajal MA, Garcia-Pareja S, Guirado D, Vilches M, Anguiano M, Palma AJ, et al. Monte Carlo simulation using the PENELOPE code with an ant colony algorithm to study MOSFET detectors. Phys Med Biol 2009;54:6263-76.

Ahnesjo A, van Veelen B, Tedgren AC. Collapsed cone dose calculations for heterogeneous tissues in brachytherapy using primary and scatter separation source data. Comput Methods Programs Biomed 2017;139:17-29.

Chaikh A, Kumar T, Balosso J. What should we know about photon dose calculation algorithms used for radiotherapy? Their impact on dose distribution and medical decisions based on TCP/NTCP. A review. Int J Cancer Ther Oncol 2016;4:1-12.

Mather ML, Collings AF, Bajenov N, Whittaker AK, Baldock C. Ultrasonic absorption in polymer gel dosimeters. Ultrasonics 2003;41:551-9.

Baldock C, De Deene Y, Doran S, Ibbott G, Jirasek A, Lepage M, et al. Polymer gel dosimetry. Phys Med Biol 2010;55:R1-63.

Vial P, Oliver L, Greer PB, Baldock C. An experimental investigation into the radiation field offset of a dynamic multileaf collimator. Phys Med Biol 2006;51:5517-38.

Hurley C, McLucas C, Pedrazzini G, Baldock C. High-resolution gel dosimetry of a HDR brachytherapy source using normoxic polymer gel dosimeters: Preliminary study. Nucl Instrum Methods 2006;565:801-11.

KnOOs T. 3D dose computation algorithms. J Phys Conf Ser 2017;847:012037.

Reinhart AM, Fast MF, Ziegenhein P, Nill S, Oelfke U. A kernel-based dose calculation algorithm for kV photon beams with explicit handling of energy and material dependencies. Br J Radiol 2017;90:20160426.

Mainegra-Hing E, Rogers DW, Kawrakow I. Calculation of photon energy deposition kernels and electron dose point kernels in water. Med Phys 2005;32:685-99.

Eklund K, AhnesjO A. Fast modelling of spectra and

stopping-power ratios using differentiated fluence pencil kernels. Phys Med Biol 2008;53:4231-47.

Azcona JD, Barbes B, Wang L, Burguete J. Experimental pencil beam kernels derivation for 3D dose calculation in flattening filter free modulated fields. Phys Med Biol 2016;61:50-66.

Taylor PA, Kry SF, Followill DS. Pencil beam algorithms are unsuitable for proton dose calculations in lung. Int J Radiat Oncol Biol Phys 2017;99:750-6.

Eklund K, Ahnesjo A. Modeling silicon diode dose response factors for small photon fields. Phys Med Biol 2010;55:7411-23.

Knoos T, Wieslander E, Cozzi L, Brink C, Fogliata A, Albers D, et al. Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations. Phys Med Biol 2006;51:5785-807.

Das IJ, Ding GX, Ahnesjo A. Small fields: Nonequilibrium radiation dosimetry. Med Phys 2008;35:206-15.

Chetty IJ, Curran B, Cygler JE, DeMarco JJ, Ezzell G, Faddegon BA, et al. Report of the AAPM Task Group No 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys 2007;34:4818-53.

Partanen M, Ojala J, Niemela J, Bjorkqvist M, Keyrilainen J, Kapanen M, et al. Comparison of two Monte Carlo-based codes for small-field dose calculations in external beam radiotherapy. Acta Oncol 2017;56:891-3.

Fonseca TC, Mendes BM, Lacerda MA, Silva LA, Paixao L, Bastos FM, et al. MCMEG: Simulations of both PDD and TPR for 6MV LINAC photon beam using different MC codes. Radiat Phys Chem 2017;140:386-91.

Baro J, Sempau J, Fernandez-Varea JM, Salvat F. PENELOPE: An algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nucl Instrum Methods B 1995;100:31-46.

Sempau J, Acosta E, Baro J, Fernandez-Varea JM, Salvat F. An algorithm for Monte Carlo simulation of coupled electron-photon transport. Nucl Instrum Methods B 1997;132:377-90.

Sempau J, Fernandez-Varea JM, Acosta E, Salvat F. Experimental benchmarks of the Monte Carlo code PENELOPE. Nucl Instrum Methods B 2003;207:107-23.

Salvat F, Fernandez-Varea JM, Sempau J, Llovet X. Monte Carlo simulation of bremsstrahlung emission by electrons. Radiat Phys Chem 2006;75:1201-19.

Almansa JF, Guerrero R, Torres J, Lallena AM. Monte Carlo dosimetric characterization of the Flexisource co-60 high-dose-rate brachytherapy source using PENELOPE. Brachytherapy 2017;16:1073-80.

Salvat F, Fernandez-Varea JM, Sempau J. PENELOPE-2008: A Code System for Monte Carlo Simulation of Electron and Photon Transport. Issy-les-Moulineaux: OECD Nuclear Energy Agency; 2008.

Sempau J, Badal A, Brualla L. A PENELOPE-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries-application to far-from-axis fields. Med Phys 2011;38:5887-95.

Llovet X, Salvat F. PENEPMA: A Monte Carlo program for the simulation of X-ray emission in electron probe microanalysis. Microsc Microanal 2017;23:634-46.

Vella A, Munoz A, Healy MJF, Lane DW, Lockley D, Zhou JG. A fast and reliable approach to simulating the output from an X-ray tube used for developing security backscatter imaging. Proc SPIE 10388; 2017.

Birindelli G, Feugeas JL, Caron J, Dubroca B, Kantor G, Page J, et al. High performance modelling of the transport of energetic particles for photon radiotherapy. Phys Med 2017;42:305-12.

Sharma D, Sempau J, Badano A. On the efficiency of variance reduction techniques for Monte Carlo estimates of imaging noise. Med Phys 2018:45:629-34.

Ceberg CP, Bjarngard BE, Zhu TC. Experimental determination of the dose kernel in high-energy x-ray beams. Med Phys 1996;23:505-11.

Mayles P, Nahum A, Rosenwald JC, edirors. Handbook of Radiotherapy Physics: Theory and Practice. Boca Raton, FL: Taylor & Francis Group, CRC Press; 2007.

Storchi P, Woudstra E. Calculation of the absorbed dose distribution due to irregularly shaped photon beams using pencil beam kernels derived form basic beam data. Phys Med Biol 1996;41:637-56.

Ahnesjo A, Saxner M, Trepp A. A pencil beam model for photon dose calculation. Med Phys 1992;19:263-73.

Ulmer W, Pyyry J, Kaissl W. A 3D photon superposition/ convolution algorithm and its foundation on results of Monte Carlo calculations. Phys Med Biol 2005;50:1767-90.

Van Esch A, Tillikainen L, Pyykkonen J, Tenhunen M, Helminen H, Siljamaki S, et al. Testing of the analytical anisotropic algorithm for photon dose calculation. Med Phys 2006;33:4130-48.

Tillikainen L, Helminen H, Torsti T, Siljamaki S, Alakuijala J, Pyyry J, et al. A 3D pencil-beam-based superposition algorithm for photon dose calculation in heterogeneous media. Phys Med Biol 2008;53:3821-39.

Knoos T, Ceberg C, Weber L, Nilsson P. The dosimetric verification of a pencil beam based treatment planning system. Phys Med Biol 1994;39:1609-28.

Knoos T, Ahnesjo A, Nilsson P, Weber L. Limitations of a pencil beam approach to photon dose calculations in lung tissue. Phys Med Biol 1995;40:1411-20.

Hurkmans C, Knoos T, Nilsson P, Svahn-Tapper G, Danielsson H. Limitations of a pencil beam approach to photon dose calculations in the head and neck region. Radiother Oncol 1995;37:74-80.

Weber L, Ahnesjo A, Nilsson P, Saxner M, Knoos T. Verification and implementation of dynamic wedge calculations in a treatment planning system based on a dose-to-energy-fluence formalism. Med Phys 1996;23:307-16.

Hurkmans C, Knoos T, Nilsson P. Dosimetric verification of open asymmetric photon fields calculated with a treatment planning system based on dose-to-energy-fluence concepts. Phys Med Biol 1996;41:1277-90.

Hansson H, Bjork P, Knoos T, Nilsson P. Verification of a pencil beam based treatment planning system: Output factors for open photon beams shaped with MLC or blocks. Phys Med Biol 1999;44:N201-7.

Sheikh-Bagheri D, Rogers DW. Sensitivity of megavoltage photon beam Monte Carlo simulations to electron beam and other parameters. Med Phys 2002;29:379-90.

Almond PR, Andreo P, Mattsson O, Nahum AE, Roos M. The Use of Plane-Parallel Ionization Chambers in High-Energy Electron and Photon Beams. An International Code of Practice for dosimetry. Technical Reports Series No. 381. Vienna: IAEA: IAEA; 1997.

Yin Z, Hugtenburg RP, Beddoe AH. Response corrections for solid-state detectors in megavoltage photon dosimetry. Phys Med Biol 2004;49:3691-702.


Refbacks

  • There are currently no refbacks.


 

  https://e-rasaneh.ir/Certificate/22728

https://e-rasaneh.ir/

ISSN : 2228-7477