Circular Mitochondrial DNA: A Geant4‑DNA User Application for Evaluating Radiation‑induced Damage in Circular Mitochondrial DNA

Mohammad Bagher Tavakoli, Habiballah Moradi, Hossein Khanahmad, Mohsen Hosseini

DOI: 10.4103/jmss.JMSS_23_17

Abstract


The aim of this study was to develop a nucleotide geometrical model of the circular mitochondrial
DNA (mt‑DNA) structure using Geant4‑DNA toolkit to predict the radiation‑induced damages such
as single‑strand breaks (SSB), double‑strand breaks (DSB), and some other physical parameters. Our
model covers the organization of a circular human mt genetic system. The current model includes all
16,659 base pairs of human mt‑DNA. This new mt‑DNA model has been preliminarily tested in this
work by determining SSB and DSB DNA damage yields and site‑hit probabilities due to the impact
of proton particles. The accuracy of the geometry was determined by three‑dimensional visualization
in various ring element numbers. The hit locations were determined with respect to a reference
coordinate system, and the corresponding base pairs were stored in the ROOT output fle. The
coordinate determination according to the algorithm was consistent with the expected results. The
output results contain the information about the energy transfers in the backbone region of the DNA
double helix. The output fle was analyzed by root analyzing tools. Estimation of SSBs and DSBs
yielded similar results with the increment of incident particle linear energy transfer. In addition, these
values seem to be consistent with the corresponding experimental determinations. This model can
be used in numerical simulations of mt‑DNA radiation interactions to perform realistic evaluations
of DNA‑free radical reactions. This work will be extended to supercoiled conformation in the near
future.

Full Text:

PDF

References


Kam WW, Banati RB. Effects of ionizing radiation on mitochondria. Free Radic Biol Med 2013;65:607-19.

Azzam EI, Jay-Gerin JP, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 2012;327:48-60.

Kam WW, Lake V, Banos C, Davies J, Banati R. Apparent polyploidization after gamma irradiation: Pitfalls in the use of quantitative polymerase chain reaction (qPCR) for the estimation of mitochondrial and nuclear DNA gene copy numbers. Int J Mol Sci 2013;14:11544-59

Larsen NB, Rasmussen M, Rasmussen LJ. Nuclear and mitochondrial DNA repair: Similar pathways? Mitochondrion 2005;5:89-108.

Malik AN, Czajka A. Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion 2013;13:481-92.

Yukawa O, Miyahara M, Shiraishi N, Nakazawa T. Radiation-induced damage to mitochondrial D-beta-hydroxybutyrate dehydrogenase and lipid peroxidation. Int J Radiat Biol Relat Stud Phys Chem Med 1985;48:107-15.

Somosy Z. Radiation response of cell organelles. Micron 2000;31:165-81.

Kam WW, McNamara AL, Lake V, Banos C, Davies JB, Kuncic Z, et al. Predicted ionisation in mitochondria and observed acute changes in the mitochondrial transcriptome after gamma irradiation: A Monte Carlo simulation and quantitative PCR study. Mitochondrion 2013;13:736-42.

ENCODE Project Consortium, Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007;447:799-816.

Clayton DA. Transcription and replication of mitochondrial DNA. Hum Reprod 2000;15 Suppl 2:11-7.

Prithivirajsingh S, Story MD, Bergh SA, Geara FB, Ang KK, Ismail SM, et al. Accumulation of the common mitochondrial DNA deletion induced by ionizing radiation. FEBS Lett 2004;571:227-32.

Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, et al. Geant4-A simulation toolkit. Nucl Instrum Methods Phys Res A 2003;506:250-303.

Allison J, Amako K, Apostolakis J, Araujo H, Dubois PA, Asai M, et al. Geant4 developments and applications. IEEE Trans Nucl Sci 2006;53:270-8.

Francis Z, Incerti S, Ivanchenko V, Champion C, Karamitros M, Bernal MA, et al. Monte Carlo simulation of energy-deposit clustering for ions of the same LET in liquid water. Phys Med Biol 2012;57:209-24.

George NP, Ngo KV, Chitteni-Pattu S, Norais CA, Battista JR, Cox MM, et al. Structure and cellular dynamics of Deinococcus radiodurans single-stranded DNA (ssDNA)-binding protein (SSB)-DNA complexes. J Biol Chem 2012;287:22123-32.

Bernal MA, Sikansi D, Cavalcante F, Incerti S, Champion C, Ivanchenko V, et al. An atomistic geometrical model of the B-DNA configuration for DNA-radiation interaction simulations. Comput Phys Commun 2013;184:2840-7.

Bernal MA, deAlmeida CE, Incerti S, Champion C, Ivanchenko V, Francis Z, et al. The influence of DNA configuration on the direct strand break yield. Comput Math Methods Med 2015;2015:417501.

Francis Z, Villagrasa C, Clairand I. Simulation of DNA damage clustering after proton irradiation using an adapted DBSCAN algorithm. Comput Methods Programs Biomed 2011;101:265-70.

Dos Santos M, Clairand I, Gruel G, Barquinero JF, Incerti S, Villagrasa C, et al. Influence of chromatin condensation on the number of direct DSB damages induced by Ions studied using a Monte Carlo code. Radiat Prot Dosimetry 2014;161:469-73.

Dos Santos M, Villagrasa C, Clairand I, Incerti S. Influence of the DNA density on the number of clustered damages created by protons of different energies. Nucl Instrum Methods Phys Res B 2013;298:47-54.

Incerti S, Douglass M, Penfold S, Guatelli S, Bezak E. Review of geant4-DNA applications for micro and nanoscale simulations. Phys Med 2016;32:1187-200.

McNamara A, Geng C, Turner R, Mendez JR, Perl J, Held K, et al. Validation of the radiobiology toolkit TOPAS-nBio in simple DNA geometries. Phys Med 2017;33:207-15.

Meylan S, Vimont U, Incerti S, Clairand I, Villagrasa C. Geant4-DNA simulations using complex DNA geometries generated by the DnaFabric tool. Comput Phys Commun 2016;204:159-69.

Delage E, Pham QT, Karamitros M, Payno H, Stepan V, Incerti S, et al. PDB4DNA: Implementation of DNA geometry from the Protein Data Bank (PDB) description for Geant4-DNA Monte-Carlo simulations. Comput Phys Commun 2015;192:282-8.

Incerti S, Baldachino G, Bernal M, Capra R, Champion C, Francis Z, et al. The Geant4-DNA project. Int J Model Simul Sci Comput 2010;1:157-78.

Karamitros M, Incerti S, Champion C. 376 the geant4-DNA project. Radiother Oncol 2012;102 Suppl 1:S191-2.

Nikjoo H, ONeill P, Terrissol M, Goodhead DT. Quantitative modelling of DNA damage using Monte Carlo track structure method. Radiat Environ Biophys 1999;38:31-8.

Nikjoo H, ONeill P, Goodhead DT, Terrissol M. Computational modelling of low-energy electron-induced DNA damage by early physical and chemical events. Int J Radiat Biol 1997;71:467-83.

Nikjoo H, Emfietzoglou D, Watanabe R, Uehara S. Can Monte Carlo track structure codes reveal reaction mechanism in DNA damage and improve radiation therapy? Radiat Phys Chem 2008;77:1270-9.

Tajik M, Rozatian AS, Semsarha F. Simulation of ultrasoft X-rays induced DNA damage using the Geant4 Monte Carlo toolkit. Nucl Instrum Methods Phys Res Section B 2015;342:258-65.

Semsarha F, Raisali G, Goliaei B, Khalafi H. Microdosimetry of DNA conformations: Relation between direct effect of (60) Co gamma rays and topology of DNA geometrical models in the calculation of A-, B- and Z-DNA radiation-induced damage yields. Radiat Environ Biophys 2016;55:243-54.

Semsarha F, Goliaei B, Raisali G, Khalafi H, Mirzakhanian L. An investigation on the radiation sensitivity of DNA conformations to 60 Co gamma rays by using Geant4 toolkit. Nucl Instrum Methods Phys Res B 2014;323:75-81.

Raisali G, Mirzakhanian L, Masoudi SF, Semsarha F. Calculation of DNA strand breaks due to direct and indirect effects of auger electrons from incorporated 123I and 125I radionuclides using the geant4 computer code. Int J Radiat Biol 2013;89:57-64.

Tajik M, Rozatian AS, Semsarha F. Calculation of direct effects of 60 Co gamma rays on the different DNA structural levels: A simulation study using the Geant4-DNA toolkit. Nucl Instrum Methods Phys Res B 2015;346:53-60.

Bernal MA, Sikansi D, Cavalcante F, Incerti S, Champion C, Ivanchenko V, et al. Performance of a new atomistic geometrical model of the B-DNA configuration for DNA-radiation interaction simulations. J Phys Conf Ser 2014;490:12150.

Souici M, Khalil TT, Muller D, Raffy Q, Barillon R, Belafrites A, et al. Single and double-strand breaks of dry DNA exposed to protons at Bragg-peak energies. J Phys Chem B 2017;121:497-507.

Zhou X, Liu X, Zhang X, Zhou R, He Y, Li Q, et al. Non-

randomized mtDNA damage after ionizing radiation via charge transport. Sci Rep 2012;2:780.

Tran HN, Karamitros M, Ivanchenko VN, Guatelli S, McKinnon S, Murakami K, et al. Geant4 Monte Carlo simulation of absorbed dose and radiolysis yields enhancement from a gold nanoparticle under MeV proton irradiation. Nucl Instrum Methods Phys Res B 2016;373:126-39.


Refbacks

  • There are currently no refbacks.


 

  https://e-rasaneh.ir/Certificate/22728

https://e-rasaneh.ir/

ISSN : 2228-7477