Predicting the Response of Patients Treated with 177Lu-DOTATATE Using Single-photon Emission Computed Tomography-Computed Tomography Image-based Radiomics and Clinical Features

Baharak Behmanesh, Akbar Abdi-Saray, Mohammad Reza Deevband, Mahasti Amoui, Hamid R Haghighatkhah, Ahmad Shalbaf

DOI: DOI: 10.4103/jmss.jmss_54_23

Abstract


AbstractBackground: 

In this study, we want to evaluate the response to Lutetium-177 (177Lu)-DOTATATE treatment in patients with neuroendocrine tumors (NETs) using single-photon emission computed tomography (SPECT) and computed tomography (CT), based on image-based radiomics and clinical features.

Methods: 

The total volume of tumor areas was segmented into 61 SPECT and 41 SPECT-CT images from 22 patients with NETs. A total of 871 radiomics and clinical features were extracted from the SPECT and SPECT-CT images. Subsequently, a feature reduction method called maximum relevance minimum redundancy (mRMR) was used to select the best combination of features. These selected features were modeled using a decision tree (DT), random forest (RF), K-nearest neighbor (KNN), and support vector machine (SVM) classifiers to predict the treatment response in patients. For the SPECT and SPECT-CT images, ten and eight features, respectively, were selected using the mRMR algorithm.

Results: 

The results revealed that the RF classifier with feature selection algorithms through mRMR had the highest classification accuracies of 64% and 83% for the SPECT and SPECT-CT images, respectively. The accuracy of the classifications of DT, KNN, and SVM for SPECT-CT images is 79%, 74%, and 67%, respectively. The poor accuracy obtained from different classifications in SPECT images (~64%) showed that these images are not suitable for predicting treatment response.

Conclusions: 

Modeling the selected features of SPECT-CT images based on their anatomy and the presence of extensive gray levels makes it possible to predict responses to the treatment of 177Lu-DOTATATE for patients with NETs.


Keywords


Lutetium-177-DOTATATE; neuroendocrine tumors; radiomics; single-photon emission computed tomography; single-photon emission computed tomography-computed tomography

Full Text:

PDF

Refbacks

  • There are currently no refbacks.


 

  https://e-rasaneh.ir/Certificate/22728

https://e-rasaneh.ir/

ISSN : 2228-7477