Cardiovascular system modeling using windkessel segmentation model based on photoplethysmography measurements of fingers and toes
DOI: 10.4103/jmss.jmss_101_21
Abstract
Keywords
Full Text:
PDFReferences
Gaziano TA. Lifestyle and cardiovascular disease: More work to do. J Am Coll Cardiol 2017;69:1126-8.
Riegel B, Moser DK, Buck HG, Dickson VV, Dunbar SB, Lee CS, et al. Self-care for the prevention and management of cardiovascular disease and stroke: A scientific statement for healthcare professionals from the American Heart Association. J Am Heart Assoc 2017;6:e006997.
Dewi EM, Mengko TL, Zakaria H, Astami K. Increased arterial stiffness in chaterization patient by photoplethysmography analysis. International Conference on Electrical Engineering and Informatics; 2019. Available fom: https://DOI: 10.1109/ICEEI47359.2019.8988783. [Last accessed on 2020 Feb].
Saveljik I, Nikolic D, Milosevic Z, Isailovic V, Nicolic M, Parodi O, et al. 3D modeling of plague progression in the human coronary artery. Proceedings 2018;2:388.
McLaughlin NB, Campbell RW, Murray A. Accuracy of four automatic QT measurement techniques in cardiac patients and healthy subjects. Heart 1996;76:422-6.
Postema PG, De Jong JS, Van der Bilt IA, Wilde AA. Accurate electrocardiographic assessment of the QT interval: Teach the tangent. Heart Rhythm 2008;5:1015-8.
Bolanos M, Nazeran H, Haltiwanger E. Comparison of heart rate variability signal features derived from electrocardiography and photoplethysmography in healthy individuals. Conf Proc IEEE Eng Med Biol Soc 2006;2006:4289-94.
Zhang Z, Pi Z, Liu B. TROIKA: A general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise. IEEE Trans Biomed Eng 2015;62:522-31.
Millasseau SC, Kelly RP, Ritter JM, Chowienczyk PJ. Determination of age-related increases in large artery stiffness by digital pulse contour analysis. Clin Sci (Lond) 2002;103:371-7.
Elgendi M. On the analysis of fingertip photoplethysmogram signals. Curr Cardiol Rev 2012;8:14-25.
Formaggia L, Lamponi D, Tuveri M, Veneziani A. Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart. Comput Methods Biomech Biomed Engin 2006;9:273-88.
Fu Y, Qiao A, Jin L. The influence of hemodynamics on the ulceration plaques of carotid artery stenosis. J Mech Med Biol 2015;15:1-14.
Van de Vosse FN. Mathematical modelling of the cardiovascular system. J Eng Math 2003;47:175-83.
Formaggia L, Quarteroni A, Veneziani A. Cardiovascular mathematics. In: Modeling and Simulation of the Circulatory System. Milan: Springer-Verlag; 2009.
Heldt T, Mukkamala R, Moody GB, Mark RG. CVSim: An open-source cardiovascular simulator for teaching and research. Open Pacing Electrophysiol Ther J 2010;3:45-54.
Shim EB, Sah JY, Youn CH. Mathematical modeling of cardiovascular system dynamics using a lumped parameter method. Jpn J Physiol 2004;54:545-53.
Abdi M, Karimi A, Navidbakhsh M. A lumped parameter mathematical model to analyze the effects of tachycardia and bradycardia on the cardiovascular system. Int J Numer Model Electron Netw Devices Fields 2015;28:346-57.
Wetterer E. Flow and pressure in the arterial system, their hemodynamic relationship, and the principles of their measurement. Minn Med 1954;37:77-86.
Westerhof N, Stergiopulos N, Noble IM. Snapshots of Hemodynamics an Aid for Clinical Research and Graduate Education. 2nd ed. New York: Springer; 2010. Available from: https://DOI:10.1007/978-1-4419-6363-5. [Last accessed on 2020 Dec].
Westerhof N, Bosman F, DeVries CJ, Noorder-Graaf A. Analogue studies of the human systemic arterial tree. J Biomech 1969;2:121-208.
Westerhof N, Elzinga G, Sipkema P. An artificial arterial system for pumping hearts. J Appl Physiol 1971;31:776-81.
Wang JJ, O'Brien AB, Shrive NG, Parker KH, Tyberg JV. Time-domain representation of ventricular-arterial coupling as a windkessel and wave system. Am J Physiol Heart Circ Physiol 2003;284:H1358-68.
Burattini R, Natalucci S. Complex and frequency-dependent compliance of viscoelastic windkessel resolves contradictions in elastic windkessels. Med Eng Phys 1998;20:502-14.
Stergiopulos N, Westerhof BE, Westerhof N. Total arterial inertance as the fourth element of the windkessel model. Am J Physiol 1999;276:H81-8.
Grant BJ, Paradowski LJ. Characterization of pulmonary arterial input impedance with lumped parameter models. Am J Physiol 1987;252:H585-93.
Burattini R, Gnudi G. Computer identification of models for the arterial tree input impedance: Comparison between two new simple models and first experimental results. Med Biol Eng Comput 1982;20:134-44.
Burattini R, Di Salvia PO. Development of systemic arterial mechanical properties from infancy to adulthood interpreted by four-element windkessel models. J Appl Physiol (1985) 2007;103:66-79.
Frasch HF, Kresh JY, Noordergraaf A. Two-port analysis of microcirculation: An extension of windkessel. Am J Physiol 1996;270:H376-85.
Milisic V, Quarteroni A. Analysis of lumped parameter models for blood flow simulations and their relation with 1D models. Math Mod Numer Anal 2004;38:613-32.
Formaggia L, Veneziani A. Reduced and Multiscale Models for the Human CVS. Technical Report, PoliMI, Milan; 2003.
Belarminus P, Florida Boa G. Factors affecting the occurrence of coronary heart disease in the general hospital of Waikabubak, Indonesia. KnE Life Sci 2022;2022:1004-12.
Suryati T, Suyitno S. Prevalence and risk factors of the ischemic heart diseases in Indonesia: A data analysis of Indonesia basic health research (Riskesdas) 2013. Public Health Indonesia 2020;6:138-44.
Castaneda D, Esparza A, Ghamari M, Soltanpur C, Nazeran H. A review on wearable photoplethysmography sensors and their potential future applications in health care. Int J Biosens Bioelectron 2018;4:195-202.
Bramwell JC, Hill A. Velocity of transmission of the pulse-wave. Lancet 1922;199:891-2.
Eliakim M, Sapoznikov D, Weinman J. Pulse wave velocity in healthy subjects and in patients with various disease states. Am Heart J 1971;82:448-57.
Elgendi M, Fletcher R, Liang Y, Howard N, Lovell NH, Abbott D, et al. The use of photoplethysmography for assesing hypertension. NPJ Digit Med 2019;2:60.
Simek J, Wichterle D, Melenovsky V, Malik J, Svacina S, Widimsky J. Second derivative of the finger arterial pressure waveform: An insight into dynamics of the peripheral arterial pressure pulse. Physiol Res 2005;54:505-13.
Millasseau SC, Guigui FG, Prasa J, Cockcroft JR, Ritter JM, Choweienczyk PJ. Non-invasive assessment of the digital volume pulse comparison with the peripheral pressure pulse. Hypertension 2000;36:952-7.
Elgendi M, Norton I, Brearley M, Abbott D, Schuurmans D. Systolic peak detection in acceleration photoplethysmograms measured from emergency responders in tropical conditions. PLoS ONE 2013;8:e76585.
Yousef Q. Assessment of atherosclerosis in erectile dysfunction subjects using second derivative of photoplethysmogram. Sci Res Essays 2012;7:2230-6.
Olufsen MS, Nadim A. On deriving lumped models for blood flow and pressure in the systemic arteries. Math Biosci Eng 2004;1:61-80.
Palladino JL, Ribeiro LC, Noordergraaf A. Human circulatory system model based on Frank's mechanism. Stud Health Technol Inform 2000;71:29-40.
Zahedi E, Chellappan K, Ali MA, Singh H. Analysis of the effect of ageing on rising edge characteristics of the photoplethysmogram using a modified Windkessel model. Cardiovasc Eng 2007;7:172-81.
Allen J, Murray A. Modelling the relationship between peripheral blood pressure and blood volume pulses using linear and neural network system identification techniques. Physiol Meas 1999;20:287-301.
Catanho M, Sinha M, Vijayan V. Model of Aortic Blood Flow Using the Windkessel. Mathematical Methods in Bioengineering Report; 2012. p. 1-15.
Ferreira A, Souza M. Three-section transmission-line arterial model for non-invasive assessment of vascular remodeling in primary hypertension. Biomed Signal Process Control 2009;4:2-6.
Safaei S, Bradley CP, Suresh V, Mithraratne K, Muller A, Ho H, et al. Roadmap for cardiovascular circulation model. J Physiol 2016;594:6909-28.
Shi Y, Lawford P, Hose R. Review of zero-D and 1-D models of blood flow in the cardiovascular system. Biomed Eng Online 2011;10:33.
Deepankaew R, Naiyanetr P. The Simulation of Cardiovascular System for Physiology Study. The 7th Biomedical Engineering International Conference; 2014. Available from: https://DOI: 10.1109/BMEiCON0.2014.7017430. [Last accessed on 2020 Dec].
Avolio AP. Multi-branched model of the human arterial system. Med Biol Eng Comput 1980;18:709-18.
Ghasemalizadeh O, Mirzaee M, Firoozabadi B. Modeling the human cardiovascular system and peristaltic motion of descending arteries using the lumped method. Internet J Bioeng 2012;3:1-11.
Refbacks
- There are currently no refbacks.
https://e-rasaneh.ir/Certificate/22728
ISSN : 2228-7477