Investigation the efficacy of fuzzy logic implementation at image-guided radiotherapy

Ahmad Esmaili Torshabi

DOI: 10.4103/jmss.JMSS_76_20

Abstract


At image-guided radiotherapy, technique, different imaging, and monitoring systems are utilized for (i) organs border detection and tumor delineation during the treatment planning process and (ii) patient setup and tumor localization at pretreatment step and (iii) real-time tumor motion tracking for dynamic thorax tumors during the treatment. In this study, the effect of fuzzy logic is quantitatively investigated at different steps of image-guided radiotherapy. Fuzzy logic-based models and algorithms have been implemented at three steps, and the obtained results are compared with commonly available strategies. Required data are (i) real patients treated with Synchrony Cyberknife system at Georgetown University Hospital for real-time tumor motion prediction, (ii) computed tomography images taken from real patients for geometrical setup, and also (iii) tomography images of an anthropomorphic phantom for tumor delineation process. In real-time tumor tracking, the targeting error averages of the fuzzy correlation model in comparison with the Cyberknife modeler are 4.57 mm and 8.97 mm, respectively, for a given patient that shows remarkable error reduction. In the case of patient geometrical setup, the fuzzy logic-based algorithm has better influence in comparing with the artificial neural network, while the setup error averages is reduced from 1.47 to 0.4432 mm using the fuzzy logic-based method, for a given patient.Finally, the obtained results show that the fuzzy logic based image processing algorithm exhibits much better performance for edge detection compared to four conventional operators. This study is an effort to show that fuzzy logic based algorithms are also highly applicable at image-guided radiotherapy as one of the important treatment modalities for tumor delineation, patient setup error reduction, and intrafractional motion error compensation due to their inherent properties.

Keywords


Fuzzy logic, image-guided radiotherapy, margins, patient positioning, tracking

Full Text:

PDF

References


Badey A, Barateau A, Delaby N, Fau P, Garcia R, De Crevoisier R, et al. Overview of adaptive radiotherapy in 2019: From implementation to clinical use. Cancer Radiother 2019;23:581-91.

Webster A, Appelt AL, Eminowicz G. Image-guided radiotherapy for pelvic cancers: A review of current evidence and clinical utilisation. Clin Oncol (R Coll Radiol) 2020;32:805-16.

Luo R, Wu VW, He B, Gao X, Xu Z, Wang D, et al. Development of a normal tissue complication probability (NTCP) model for radiation-induced hypothyroidism in nasopharyngeal carcinoma patients. BMC Cancer 2018;18:575.

Samuels SE, Eisbruch A, Vineberg K, Lee J, Lee C, Matuszak MM, et al. Methods for reducing normal tissue complication probabilities in oropharyngeal cancer: Dose reduction or planning target volume elimination. Int J Radiat Oncol Biol Phys 2016;96:645-52.

Bell K, Licht N, Rübe C, Dzierma Y. Image guidance and positioning accuracy in clinical practice: Influence of positioning errors and imaging dose on the real dose distribution for head and neck cancer treatment. Radiat Oncol 2018;13:190.

Zhang X, Rong Y, Morrill S, Fang J, Narayanasamy G, Galhardo E, et al. Robust optimization in lung treatment plans accounting for geometric uncertainty. J Appl Clin Med Phys 2018;19:19-26.

Contesini M, Guberti M, Saccani R, Braglia L, Iotti C, Botti A, et al. Setup errors in patients with head-neck cancer (HNC), treated using the Intensity Modulated Radiation Therapy (IMRT) technique: How it influences the customised immobilisation systems, patient's pain and anxiety. Radiat Oncol 2017;12:72.

Tanaka Y, Oita M, Inomata S, Fuse T, Akino Y, Shimomura K. Impact of patient positioning uncertainty in noncoplanar intracranial stereotactic radiotherapy. J Appl Clin Med Phys 2020;21:89-97.

Samadi Miandoab P, Esmaili Torshabi A, Nankali S, Rezaie MR. A simulation study on patient setup errors in external beam radiotherapy using an anthropomorphic 4D phantom. IJMP 2016;13:276-88.

Cavedon C. Real-time control of respiratory motion: Beyond radiation therapy. Phys Med 2019;66:104-12.

Riboldi M, Orecchia R, Baroni G. Real-time tumour tracking in particle therapy: Technological developments and future perspectives. Lancet Oncol 2012;13:e383-91.

Esmaili Torshabi A, Pella A, Riboldi M, Baroni G. Targeting accuracy in real-time tumor tracking via external sorrugates; a comparative study. Technol Cancer Res Treat 2010;9:551-62.

Esmaili Torshabi A. Investigation of tumor motion influence on applied dose distribution in conventional proton therapy vs. IMPT a 4D Monte Carlo simulation study. Int J Radiat Res 2013;11:225-31.

Grégoire V, Guckenberger M, Haustermans K, Lagendijk JJ, Ménard C, Pötter R, et al. Image guidance in radiation therapy for better cure of cancer. Mol Oncol 2020;14:1470-91.

Dhont J, Harden SV, Chee LY, Aitken K, Hanna GG, Bertholet J. Image-guided radiotherapy to manage respiratory motion: Lung and liver. Clin Oncol (R Coll Radiol) 2020;32:792-804.

Murray J, Griffin C, Gulliford S, Syndikus I, Staffurth J, Panades M, et al. A randomised assessment of image guided radiotherapy within a phase 3 trial of conventional or hypofractionated high dose intensity modulated radiotherapy for prostate cancer. Radiother Oncol 2020;142:62-71.

Huynh E, Hosny A, Ghutier C, Bitterman DS, Petit SF, HaasKogan DA, et al. Artificial intelligence in radiation oncology. Nat Rev Clin Oncol 2019;17:771-81.

Zadeh LA. Fuzzy sets. Inform Control 1965;8:338-53.

Zadeh LA. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cybern 1973;3:28-44.

Zadeh LA. Fuzzy logic. Computer 1988;1:83-93.

Zadeh LA. Knowledge representation in fuzzy logic. IEEE Trans Knowl Data Eng 1989;1:89-100.

Lee CC. Fuzzy logic in control systems: Fuzzy logic controller. I. IEEE Trans Syst Man Cybern 1990;20:404-18.

Esmaili Torshabi A, Riboldi M, Imani Fooladi AA, Modarres Mosalla SM, Baroni G. An adaptive fuzzy prediction model for real time tumor tracking in radiotherapy via external surrogates. J Appl Clin Med Phys 2013;14:4008.

Esmaili Torshabi A, Ahmadi Arbatan M. An Assessment on Implementation of Imperialist Competitive Algorithm for Motion Dataset Optimization at Radiotherapy with External Surrogate. Iran J Med Phys 2021;18:369-75.

Esmaili Torshabi A. Investigation the robustness of adaptive neuro-fuzzy inference system for tracking of moving tumors in external radiotherapy. Australas Phys Eng Sci Med 2014;37:771-8.

Esmaili Torshabi A, Riboldi M, Pella A, Negarestani A, Rahnema M, Baroni G. Fuzzy Logic, Chapter in a book: Clinical Application of Fuzzy Logic. In: Fuzzy Logic, Emerging Technologies and Applications. London, UK: InTech Publisher; 2011. p. 1-16.

Ghorbanzadeh L, Torshabi AE, Nabipour JS, Arbatan MA. Development of a synthetic adaptive neuro-fuzzy prediction model for tumor motion tracking in external radiotherapy by evaluating various data clustering algorithms. Technol Cancer Res Treat 2016;15:334-47.

Tahmasebi Birgani MJ, Chegeni N, Farhadi Birgani F, Fatehi D, Akbarizadeh G, Shams A. Optimization of brain tumor MR image classification accuracy using optimal threshold, PCA and training ANFIS with different repetitions. J Biomed Phys Eng 2019;9:189-98.

Chen L, Bai S, Li G, Li Z, Xiao Q, Bai L, et al. Accuracy of real-time respiratory motion tracking and time delay of gating radiotherapy based on optical surface imaging technique. Radiat Oncol 2020;15:170.

Ehrbar S, Perrin R, Peroni M, Bernatowicz K, Parkel T, Pytko I, et al. Respiratory motion-management in stereotactic body radiation therapy for lung cancer - A dosimetric comparison in an anthropomorphic lung phantom (LuCa). Radiother Oncol 2016;121:328-34.

Yang ZY, Chang Y, Liu HY, Liu G, Li Q. Target margin design for real-time lung tumor tracking stereotactic body radiation therapy using CyberKnife Xsight Lung Tracking System. Sci Rep 2017;7:10826.

Floriano A, García R, Moreno R, Sánchez-Reyes A. Retrospective evaluation of CTV to PTV margins using CyberKnife in patients with thoracic tumors. J Appl Clin Med Phys 2014;15:59-74.

Bertholet J, Knopf A, Eiben B, McClelland J, Grimwood A, Harris E, et al. Real-time intrafraction motion monitoring in external beam radiotherapy. Phys Med Biol 2019;64:15TR01.

Histed SN, Lindenberg ML, Mena E, Turkbey B, Choyke PL, Kurdziel KA. Review of functional/anatomic imaging in oncology. Nucl Med Commun 2012;33:349-61.

Haytmyradov M, Mostafavi H, Wang A, Zhu L, Surucu M, Patel R, et al. Markerless tumor tracking using fast-kV switching dual-energy fluoroscopy on a benchtop system. Med Phys 2019;46:3235-44.

Mafi M, Moghadam SM. Real-time prediction of tumor motion using a dynamic neural network. Med Biol Eng Comput 2020;58:529-39.

Balasubramanian A, Shamsuddin R, Prabhakaran B, Sawant A. Predictive modeling of respiratory tumor motion for real-time prediction of baseline shifts. Phys Med Biol 2017;62:1791-809.

Rostampour N, Jabbari K, Esmaeili M, Mohammadi M, Nabavi SH. Markerless respiratory tumor motion prediction using an adaptive neuro-fuzzy approach. J Med Signals Sens 2018;8:25-30.

Jain AK, Murty MN, Flynn PJ. Data clustering: A review. ACM Comput Surv 1999;31:264-323.

Chiu S. Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 1994;2:267-78.

Dunn JC. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cyber 1973;3:32-57.

Bezdek JC. Pattern Recognition with Fuzzy Objective Function Algoritms. New York: Plenum Press; 1981.

Infusino E, Trodella L, Ramella S, D'Angelillo RM, Greco C, Iurato A, et al. Estimation of patient setup uncertainty using BrainLAB Exatrac X-Ray 6D system in image-guided radiotherapy. J Appl Clin Med Phys 2015;16:5102.

Keeling V, Hossain S, Jin H, Algan O, Ahmad S, Ali I. Quantitative evaluation of patient setup uncertainty of stereotactic radiotherapy with the frameless 6D ExacTrac system using statistical modeling. J Appl Clin Med Phys 2016;17:111-27.

Unkelbach J, Paganetti H. Robust proton treatment planning: Physical and biological optimization. Semin Radiat Oncol 2018;28:88-96.

Sahoo N, Poenisch F, Zhang X, Li Y, Lii M, Li H, et al. 3D treatment planning system-Varian Eclipse for proton therapy planning. Med Dosim 2018;43:184-94.

Gallio E, Giglioli FR, Girardi A, Guarneri A, Ricardi U, Ropolo R, et al. Evaluation of a commercial automatic treatment planning system for liver stereotactic body radiation therapy treatments. Phys Med 2018;46:153-9.


Refbacks

  • There are currently no refbacks.


 

  https://e-rasaneh.ir/Certificate/22728

https://e-rasaneh.ir/

ISSN : 2228-7477