Image quality and pulmonary nodule detectability at low-dose computed tomography (low kVp and mAs): A phantom study
DOI: 10.4103/jmss.JMSS_65_20
Abstract
Background: Nowadays, there has been a growing demand for low-dose computed tomography (LDCT) protocols. CT has a critical role in the management of the diagnosis chain of pulmonary disease, especially in lung cancer screening. There have been introduced several dose reduction methods, however, most of them are time-consuming, intricate, and vendor-based strategies that are hardly used in clinics routinely. This study aims to evaluate the image quality and pulmonary nodule detectability of LDCT protocols that are feasible and easy implemented. Image quality was analyzed in a general quality control phantom (Gammex) and then in a manmade lung phantom with nodules-equivalent objects. Methods: This study was designed in a two steps, in the first step, a feasible low-dose lung CT protocol was selected with quality assessment of accreditation phantom image. In the second step, the selected low-dose protocol with an appropriate image quality was performed on a manmade lung phantom in which there were objects equivalent to the pulmonary nodule. Finally, image quality parameters of the phantom at the appropriate scan protocol were compared with the standard protocol. Results: A reduction of about 17% of kVp and 46% in tube current leads to dose reduction by about 70%. The contrast-to-noise ratio in the low-dose protocol remained almost unchanged. The signal-to-noise ratio in the low-dose protocol decreased by approximately 32%, and the noise level has increased by about 1.5 times. However, this reduction method hardly affected the detectability of nodules in man-made pulmonary phantom. Conclusions: Here, we demonstrated that the LDCT scan has an insignificant effect on the perception of lung nodules. In this study, patient dose in lung CT was reduced by modifying of kVp and mAs about approximately 70%. Hence, to step in toward low-dose strategies in medical imaging clinics, using easy-implemented and feasible low-dose strategies may be helpful.
Keywords
Full Text:
PDFReferences
Jemal A, Fedewa SA. Lung cancer screening with low-dose computed tomography in the united states-2010 to 2015. JAMA Oncol 2017;3:1278-81.
Jonas DE, Reuland DS, Reddy SM, Nagle M, Clark SD, Weber RP, et al. Screening for lung cancer with low-dose computed tomography: Updated evidence report and systematic review for the US preventive services task force. JAMA 2021;325:971-87.
Meza R, Jeon J, Toumazis I, ten Haaf K, Cao P, Bastani M, et al. Evaluation of the benefits and harms of lung cancer screening with low-dose computed tomography: A collaborative modeling study for the US preventive services task force. JAMA 2021;325(10):988-97.
Ruano-Ravina A, Pérez-Ríos M, Casàn-Clará P, Provencio-Pulla M. Low-dose CT for lung cancer screening. Lancet Oncol 2018;19:e131-2.
Shen H. Low-dose CT for lung cancer screening: Opportunities and challenges. Front Med 2018;12:116-21.
Bach PB, Mirkin JN, Oliver TK, Azzoli CG, Berry DA, Brawley OW, et al. Benefits and harms of CT screening for lung cancer: A systematic review. Jama 2012;307:2418-29.
Patz EF, Pinsky P, Gatsonis C, Sicks JD, Kramer BS, Tammemägi MC, et al. Overdiagnosis in low-dose computed tomography screening for lung cancer. JAMA Intern Med 2014;174:269-74.
Perisinakis K, Seimenis I, Tzedakis A, Karantanas A, Damilakis J. Radiation burden and associated cancer risk for a typical population to be screened for lung cancer with low-dose CT: A phantom study. Eur Radiol 2018;28:4370-8.
Council NR. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2; the National Academies Press: Council NR; 2006.
Albert JM. Radiation risk from CT: Implications for cancer screening. Am J Roentgenol 2013;201:W81-7.
Mascalchi M, Mazzoni LN, Falchini M, Belli G, Picozzi G, Merlini V, et al. Dose exposure in the ITALUNG trial of lung cancer screening with low-dose CT. Br J Radiol 2012;85:1134-9.
National Lung Screening Trial Research Team, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011;365:395-409.
Kubo T, Ohno Y, Nishino M, Lin PJ, Gautam S, Kauczor HU, et al. Low dose chest CT protocol (50 mAs) as a routine protocol for comprehensive assessment of intrathoracic abnormality. Eur J Radiol Open 2016;3:86-94.
Moser JB, Sheard SL, Edyvean S, Vlahos I. Radiation dose-reduction strategies in thoracic CT. Clin Radiol 2017;72:407-20.
Raman SP, Mahesh M, Blasko RV, Fishman EK. CT scan parameters and radiation dose: Practical advice for radiologists. J Am Coll Radiol 2013;10:840-6.
Gariani J, Martin SP, Botsikas D, Becker CD, Montet X. Evaluating the effect of increased pitch, iterative reconstruction and dual source CT on dose reduction and image quality. Br J Radiol 2018;91:1088.
Afadzi M, Lysvik EK, Andersen HK, Martinsen AC. Ultra-low dose chest computed tomography: Effect of iterative reconstruction levels on image quality. Eur J Radiol 2019;114:62-8.
Estak K, Mohammadzadeh M, Gharehaghaji N, Mortezazadeh T, Khatyal R, Khezerloo D. Optimisation of CT scan parameters to increase the accuracy of gross tumour volume identification in brain radiotherapy. J Radioth Pract 2020;20(3):1-5.
Mansour Z, Mokhtar A, Sarhan A, Ahmed M, El-Diasty T. Quality control of CT image using American College of Radiology (ACR) phantom. Egypt J Radiol Nucl Med 2016;47:1665-71.
Verdun FR, Racine D, Ott JG, Tapiovaara MJ, Toroi P, Bochud FO, et al. Image quality in CT: From physical measurements to model observers. Phys Med 2015;31:823-43.
MacMahon H, Naidich DP, Goo JM, Lee KS, Leung AN, Mayo JR, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: From the fleischner society 2017. Radiology 2017;284:228-43.
Macri F, Greffier J, Pereira FR, Mandoul C, Khasanova E, Gualdi G, et al. Ultra-low-dose chest CT with iterative reconstruction does not alter anatomical image quality. Diagn Interv Imaging 2016;97:1131-40.
Hata A, Yanagawa M, Honda O, Gyobu T, Ueda K, Tomiyama N. Submillisievert CT using model-based iterative reconstruction with lung-specific setting: An initial phantom study. Eur Radiol 2016;26:4457-64.
Demb J, Chu P, Yu S, Whitebird R, Solberg L, Miglioretti DL, et al. Analysis of computed tomography radiation doses used for lung cancer screening scans. JAMA Intern Med 2019;179:1650-7.
Refbacks
- There are currently no refbacks.
https://e-rasaneh.ir/Certificate/22728
ISSN : 2228-7477