Automatic generation of structured radiology reports for volumetric computed tomography images using question-Specific deep feature extraction and learning
DOI: 10.4103/jmss.JMSS_21_20
Abstract
Keywords
Full Text:
PDFReferences
Xue Y, Tao X, Rodney LL, Zhiyun X, Sameer A, Thoma Gr, et al. Multimodal recurrent model with attention for automated radiology report generation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer; 2018.
Lau JJ, Gayen S, Ben Abacha A, Demner-Fushman D. A dataset of clinically generated visual questions and answers about radiology images. Sci Data 2018;5:180251.
Wang, J, Hairong L, Rui J, Zhen X. Rule-Based Method to Develop Question-Answer Dataset from Chest X-Ray Reports. In: 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS). Cordoba, Spain: IEEE; 2019.
Loveymi S, Dezfoulian MH, Mansoorizadeh M. Generate structured radiology report from CT images using image annotation techniques: Preliminary results with liver CT. J Digit Imaging 2020;33:375-90.
Nedjar, I, Mahmoudi S, Chikh MA, Abi-Yad Kh, Bouafia Z. Automatic Annotation of Liver CT Image: ImageCLEFmed 2015. CLEF (Working Notes); 2015.
Nedjar I, Mahmoudi S, Chikh MA. Content-based Medical Image Tetrieval for Liver CT Annotation. Transactions on Machine Learning and Artificial Intelligence; 2017. p. 5.
Camlica Z, Tizhoosh HR, Khalvati F. Medical image classification via SVM using LBP features from saliency-based folded data. In: 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA). Miami, Florida, USA: IEEE; 2015.
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks.In: Advances in Neural Information Processing Systems(NIPS) Nevada,USA; 2012.
Singh S, Ho-Shon K, Karimi S. Hamey L. modality classification and concept detection in medical images using deep transfer learning. In: 2018 International Conference on Image and Vision Computing New Zealand (IVCNZ). IEEE; 2018.
Afshar P, Mohammadi A, Plataniotis KN, Oikonomou A, Benali H. From handcrafted to deep-learning-based cancer radiomics: Challenges and opportunities. IEEE Signal Processing Magazine 2019;36:132-60.
Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE. A survey of deep neural network architectures and their applications. Neurocomputing 2017;234:11-26.
Marvasti NB, García MD, Üsküdarli S, Montes JF, Acar B. Overview of the ImageCLEF 2015 liver CT annotation task. In: CLEF (Working Notes). Workshop Proceedings. CEUR-¬WS.org, no. 1613-¬0073, Toulouse, France; 2015.
Kumar A, Dyer S, Kim J, Li C, Leong PH, Fulham M, et al. Adapting content-based image retrieval techniques for the semantic annotation of medical images. Comput Med Imaging Graph 2016;49:37-45.
Haralick RM, Shanmugam K, Dinstein IH. Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics; 1973. p. 610-21.
Lee TS. Image representation using 2D Gabor wavelets. IEEE Trans Pattern Analysis Mach Intellig 1996;18:959-71.
Spanier AB, Caplan N, Sosna J, Acar B, Joskowicz L. A fully automatic end-to-end method for content-based image retrieval of CT scans with similar liver lesion annotations. Int J Comput Assist Radiol Surg 2018;13:165-74.
Liu M, Zhang J, Nie D, Yap PT, Shen D. Anatomical landmark based deep feature representation for MR images in brain disease diagnosis. IEEE J Biomed Health Inform 2018;22:1476-85.
Jing B, Xie P, Xing E. On the automatic generation of medical imaging reports. arXiv:1711.08195v3:2017.
Zhang Z, Xie Y, Xing F, McGough M, Yang L. Mdnet: A Semantically and Visually Interpretable Medical Image Diagnosis Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2017.
Sugimori H. Classification of Computed Tomography Images in Different Slice Positions Using Deep Learning. J Healthc Eng 2018;2018:1753480.
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going Deeper with Convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2015.
Holland L, Wei D, Olson KA, Mitra A, Graff JP, Jones AD, et al. Limited number of cases may yield generalizable models, a proof of concept in deep learning for colon histology. J Pathol Inform 2020;11:5.
Chen YC, Hong DJ, Wu CW, Mupparapu M. The use of deep convolutional neural networks in biomedical imaging: A review. J Orof Sci 2019;11:3.
Baltruschat IM, Nickisch H, Grass M, Knopp T, Saalbach A. Comparison of deep learning approaches for multi-label chest X-Ray classification. Sci Rep 2019;9:6381.
Simonyan K, Zisserman A, Very deep convolutional networks for large-scale image recognition. In Proc. International Conference on Learning Representations http://arxiv.org/abs/1409.1556 :2014.
He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016. p. 770-8.
Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the Inception Architecture for Computer Vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016.
Chollet F. Xception: Deep Learning with Depthwise Separable Convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2017.
Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 2017.
Szegedy C, Ioffe S, Vanhoucke V, Alemi A. Inception-v4, Inception-Resnet and the Impact of Residual Connections on Learning. In: Thirty-First AAAI Conference on Artificial Intelligence; 2017.
Loveymi S, Dezfoulian MH, Mansoorizadeh M. Generate structured radiology report from liver CT images using fusion of mobilenet and local binary pattern. J Mach Vision Image Proc Forthcoming 2020;(Published Online, In Persian).
Erhan D, Courville A, Bengio Y, Vincent P. Why does unsupervised pre-training help deep learning? In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 210: p. 201-8.
Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. Mobilenetv2: Inverted Residuals and Linear Bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2018.
Li Y, Huang H, Xie Q, Yao L, Chen Q. Research on a surface defect detection algorithm based on MobileNet-SSD. Applied Sci 2018;8:1678.
Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167v3 2015.
Dahl GE, Sainath TN, Hinton GE. Improving deep neural networks for LVCSR using rectified linear units and dropout. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, Canada: IEEE; 2013.
Baldi P, Sadowski PJ. Understanding Dropout. In: Advances in Neural Information Processing Systems; 2013.
Warde-Farley D, Goodfellow IJ, Courville A, Bengio Y. An empirical analysis of dropout in piecewise linear networks. arXiv preprint arXiv:1312.6197 2013.
Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT press; 2016.
Garcia-Gasulla D, Parés F, Vilalta A, Moreno J, Ayguadé E, Labarta J. On the behavior of convolutional nets for feature extraction. J Artif Intellig Res 2018;61:563-92.
LeCun Y. LeNet-5, Convolutional Neural Networks. URL. Available from: http://yann.lecun.com/exdb/lenet/. [Last accessed on 2020 Oct 06].
Ketkar N, Santana E. Deep Learning with Python. Berkeley, CA: Apress; 2017.
Glorot X, Bengio Y. Understanding the Difficulty of Training Deep Feed for Ward Neural Networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics; 2010.
Sutskever I, Martens J, Dahl G, Hinton G. On the Importance of Initialization and Momentum in Deep Learning. In: International Conference on Machine Learning; 2013.
Kingma DP, Ba J. Adam: A method for stochastic optimization. In ICLR, 2015.
Tieleman T, Hinton G. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA. Neural Network Mach Learn 2012;4:26-31.
Refbacks
- There are currently no refbacks.
https://e-rasaneh.ir/Certificate/22728
ISSN : 2228-7477