Detection and classification of myocardial infarction with support vector machine classifier using grasshopper optimization algorithm
DOI: 10.4103/jmss.JMSS_24_20
Abstract
Keywords
Full Text:
PDFReferences
American Heart Association. Heart Attack and Angina Statistics. American Heart Association; 2008.
WHO Fact Sheet. The Top Ten Causes of Death, Fact Sheet-310. 2017 [Online]. Available: http://www.who.int/mediacentre/ factsheets/fs310/en/. [Last accessed on 2020 Jun 09].
Bolooki HM, Askari A. Acute myocardial infarction. The Cleveland Clinic Foundation. 2010. Available at: http://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/. [Last accessed on 2012 Apr 22].
Sugimoto K, Kon Y, Lee S, Okada Y. Detection and localization of myocardial infarction based on a convolutional autoencoder. Knowledge Based Syst 2019;178:123-31.
Barmpoutis P, Dimitropoulos K, Apostolidis A, Grammalidis N. Multi-lead ECG signal analysis for myocardial infarction detection and localization through the mapping of Grassmannian and Euclidean features into a common Hilbert space. Biomed Signal Process Control 2019;52:111-9.
Sharma LD, Sunkaria RK. Myocardial infarction detection and localization using optimal features based lead specific approach. IRBM 2020;41:58-70.
Ketcham M, Muankid A. The Feature Extraction of ECG signal in myocardial infarction patients. In: International Symposium on Natural Language Processing. Cham: Springer; 2016. p. 162-72.
Pereira H, Daimiwal N. Analysis of features for myocardial infarction and healthy patients based on wavelet. In 2016 Conference on Advances in Signal Processing (CASP). IEEE. 2016. p. 164-9.
Bhaskar NA. Performance analysis of support vector machine and neural networks in detection of myocardial infarction. Procedia Comput Sci 2015;46:20-30.
Remya RS, Indiradevi KP, Babu KA. Classification of myocardial infarction using multi resolution wavelet analysis of ECG. Procedia Technol 2016;24:949-56.
Lui HW, Chow KL. Multiclass classification of myocardial infarction with convolutional and recurrent neural networks for portable ECG devices. Inform Med Unlocked 2018;13:26-33.
Chang PC, Lin JJ, Hsieh JC, Weng J. Myocardial infarction classification with multi-lead ECG using hidden Markov models and Gaussian mixture models. Appl Soft Comput 2012;12:3165-75.
Baloglu UB, Talo M, Yildirim O, San Tan R, Acharya UR. Classification of myocardial infarction with multi-lead ECG signals and deep CNN. Pattern Recognit Lett 2019;122:23-30.
https://physionet.org/content/ptbdb/1.0.0/. DOI: https://doi.org/10.13026/C28C71. License (for files): Open Data Commons Attribution License v1.0. [Last accessed on 2020 Apr 10].
Saremi S, Mirjalili S, Lewis A. Grasshopper optimisation algorithm: Theory and application. Adv Eng Softw 2017;105:30-47.
Yang XS. Firefly algorithm, stochastic test functions and design optimisation. Int J Bioinspired Comput 2010;2:78-84.
Yang XS. A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Berlin, Heidelberg: Springer; 2010. p. 65-74.
Eberhart R, Kennedy J. , October. A new optimizer using particle swarm theory. In MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. IEEE. 1995. p. 39-43.
Holland JH. Genetic algorithms. Sci Am 1992;267:66-73.
Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies. In Proceedings of the first European conference on artificial life. 1991;142:134-4.
Yang XS. Flower pollination algorithm for global optimization. In: International Conference on Unconventional Computing and Natural Computation. Berlin, Heidelberg: Springer; 2012. p. 240-9.
Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng Softw 2014;69:46-61.
Chen S. Locust Swarms-A new multi-optima search technique. In 2009 IEEE Congress on Evolutionary Computation. IEEE. 2009. p. 1745-52.
Chen S. An analysis of locust swarms on large scale global optimization problems. In: Australian Conference on Artificial Life. Berlin, Heidelberg: Springer; 2009. p. 211-20.
Chen S, Vargas YN. Improving the performance of particle swarms through dimension reductions—A case study with locust swarms. In IEEE Congress on Evolutionary Computation. IEEE. 2010. p. 1-8.
Lewis A. LoCost: a spatial social network algorithm for multi-objective optimisation. In 2009 IEEE Congress on Evolutionary Computation. IEEE. 2009. p. 2866-70.
Cuevas E, Cortés MA, Navarro DA. Optimization based on the behavior of locust swarms. In: Advances of Evolutionary Computation: Methods and Operators. Cham: Springer; 2016. p. 101-20.
Safdarian N, Dabanloo NJ, Attarodi G. A new pattern recognition method for detection and localization of myocardial infarction using T-wave integral and total integral as extracted features from one cycle of ECG signal. J Biomed Sci Eng 2014.
Refbacks
- There are currently no refbacks.
https://e-rasaneh.ir/Certificate/22728
ISSN : 2228-7477