Evaluation of Asymmetry in Right and Left Eyes of Normal Individuals Using Extracted Features from Optical Coherence Tomography and Fundus Images

Tahereh Mahmudi, Rahele Kafieh, Hossein Rabbani, Alireza Mehri Dehnavi, Mohammad Reza Akhlaghi

DOI: 10.4103/jmss.JMSS_67_19


Background: Asymmetry analysis of retinal layers in right and left eyes can be a valuable tool for early diagnoses of retinal diseases. To determine the limits of the normal interocular asymmetry in retinal layers around macula, thickness measurements are obtained with optical coherence tomography (OCT). Methods: For this purpose, after segmentation of intraretinal layer in threedimensional OCT data and calculating the midmacular point, the TM of each layer is obtained in 9 sectors in concentric circles around the macula. To compare corresponding sectors in the right and left eyes, the TMs of the left and right images are registered by alignment of retinal raphe (i.e. diskfovea axes). Since the retinal raphe of macular OCTs is not calculable due to limited region size, the TMs are registered by first aligning corresponding retinal raphe of fundus images and then registration of the OCTs to aligned fundus images. To analyze the asymmetry in each retinal layer, the mean and standard deviation of thickness in 9 sectors of 11 layers are calculated in 50 normal individuals. Results: The results demonstrate that some sectors of retinal layers have signifcant asymmetry with P < 0.05 in normal population. In this base, the tolerance limits for normal individuals are calculated. Conclusion: This article shows that normal population does not have identical retinal information in both eyes, and without considering this reality, normal asymmetry in information gathered from both eyes might be interpreted as retinal disorders.


Alignment, asymmetry analysis, fundus images, optical coherence tomography

Full Text:



Ghorbel I, Rossant F, Bloch I, Tick S, Paques MJ. Automated segmentation of macular layers in OCT images and quantitative evaluation of performances. Pattern Recognition 2011;44:1590-603.

Garvin MK, Abramoff MD, Kardon R, Russell SR, Wu X, Sonka M. Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search. IEEE Trans Med Imaging 2008;27:1495-505.

Quellec G, Lee K, Dolejsi M, Garvin MK, Abràmoff MD, Sonka M. Three-dimensional analysis of retinal layer texture: Identification of fluid-filled regions in SD-OCT of the macula. IEEE Trans Med Imaging 2010;29:1321-30.

Asrani S, Rosdahl JA, Allingham RR. Novel software strategy for glaucoma diagnosis: Asymmetry analysis of retinal thickness. Arch Ophthalmol 2011;129:1205-11.

Huynh SC, Wang XY, Burlutsky G, Mitchell P. Symmetry of optical coherence tomography retinal measurements in young children. Am J Ophthalmol 2007;143:518-20.

Kurimoto Y, Matsuno K, Kaneko Y, Umihira J, Yoshimura N. Asymmetries of the retinal nerve fibre layer thickness in normal eyes. Br J Ophthalmol 2000;84:469-72.

Essock EA, Sinai MJ, Fechtner RD. Interocular symmetry in nerve fiber layer thickness of normal eyes as determined by polarimetry. J Glaucoma 1999;8:90-8.

Mwanza JC, Durbin MK, Budenz DL; Cirrus OCT Normative Database Study Group. Interocular symmetry in peripapillary retinal nerve fiber layer thickness measured with the Cirrus HD-OCT in healthy eyes. Am J Ophthalmol 2011;151:514-210.

Park JJ, Oh DR, Hong SP, Lee KW. Asymmetry analysis of the retinal nerve fiber layer thickness in normal eyes using optical coherence tomography. Korean J Ophthalmol 2005;19:281-7.

Budenz DL. Symmetry between the right and left eyes of the normal retinal nerve fiber layer measured with optical coherence tomography (an AOS thesis). Trans Am Ophthalmol Soc 2008;106:252-75.

Larsson E, Eriksson U, Alm A. Retinal nerve fibre layer thickness in full-term children assessed with Heidelberg retinal tomography and optical coherence tomography: Normal values and interocular asymmetry. Acta Ophthalmol 2011;89:151-8.

Altemir I, Oros D, Elía N, Polo V, Larrosa JM, Pueyo V. Retinal asymmetry in children measured with optical coherence tomography. Am J Ophthalmol 2013;156:1238-430.

Al-Haddad C, Antonios R, Tamim H, Noureddin B. Interocular symmetry in retinal and optic nerve parameters in children as measured by spectral domain optical coherence tomography. Br J Ophthalmol 2014;98:502-6.

Dalgliesh JD, Tariq YM, Burlutsky G, Mitchell P. Symmetry of retinal parameters measured by spectral-domain OCT in normal young adults. J Glaucoma 2015;24:20-4.

Alluwimi MS, Swanson WH, Malinovsky VE. Between-subject variability in asymmetry analysis of macular thickness. Optom Vis Sci 2014;91:484-90.

Mahmudi T, Kafieh R, Rabbani H, Mehri A, Akhlagi M, editors. Asymmetry evaluation of Fundus Images in Right and Left Eyes Using Radon Transform and Fractal Analysis. Image Processing (ICIP), 2015 IEEE International Conference on; 2015.

Mahmudi T, Kafieh R, Rabbani H, Akhlagi M, editors. Comparison of macular OCTs in right and left eyes of normal people. Medical Imaging 2014: Biomedical Applications in Molecular, Structural, and Functional Imaging: International Society for Optics and Photonics; 2014.

Hwang YH, Song M, Kim YY, Yeom DJ, Lee JH. Interocular symmetry of retinal nerve fibre layer thickness in healthy eyes: A spectral-domain optical coherence tomographic study. Clin Exp Optom 2014;97:550-4.

Lee SY, Jeoung JW, Park KH, Kim DM. Macular ganglion cell imaging study: Interocular symmetry of ganglion cell-inner plexiform layer thickness in normal healthy eyes. Am J Ophthalmol 2015;159:315-2300.

Dalgliesh JD, Tariq YM, Burlutsky G, Mitchell P. Symmetry of retinal parameters measured by spectral-domain OCT in normal young adults. J Glaucoma 2015;24:20-4.

Zhou M, Lu B, Zhao J, Wang Q, Zhang P, Sun X. Interocular Symmetry of Macular Ganglion Cell Complex Thickness in Young Chinese Subjects. PLoS One 2016;11:e0159583.

Yang M, Wang W, Xu Q, Tan S, Wei S. Interocular symmetry of the peripapillary choroidal thickness and retinal nerve fibre layer thickness in healthy adults with isometropia. BMC Ophthalmol 2016;16:182.

Lee SY, Lee EK, Park KH, Kim DM, Jeoung JW. Asymmetry analysis of macular inner retinal layers for glaucoma diagnosis: Swept-source optical coherence tomography study. PLoS One 2016;11:e0164866.

Yamada H, Hangai M, Nakano N, Takayama K, Kimura Y, Miyake M, et al. Asymmetry analysis of macular inner retinal layers for glaucoma diagnosis. Am J Ophthalmol 2014;158:1318-29. e3.

Mokhtari M, Rabbani H, Mehri-Dehnavi A, Kafieh R, Akhlaghi MR, Pourazizi M, et al. Local comparison of cup to disc ratio in right and left eyes based on fusion of color fundus images and OCT B-scans. Inf Fusion 2019;51:30-41.

Liao R, Zhang L, Sun Y, Miao S, Chefd'Hotel C. A review of recent advances in registration techniques applied to minimally invasive therapy. IEEE Trans Multimedia 2013;15:983-1000.

Kafieh R, Rabbani H, Abramoff MD, Sonka M. Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map. Med Image Anal 2013;17:907-28.

Kafieh R, Rabbani H, Hajizadeh F, Abràmoff MD, Sonka M. Thickness Mapping of Eleven Retinal Layers in Normal Eyes Using Spectral Domain Optical Coherence Tomography. arXiv: 13123199 [csCV] 2015;2015:1-14.

Andersson J. Diffusion Geometry with Applications to Virus Classification: Master Thesis at Dep. Math. Royal Academy of Science, Trita-mat-2008-11; 2008.

Neji R, Langs G, Deux J-F, Maatouk M, Rahmouni A, Bassez G, et al., editors. Unsupervised Classification of Skeletal Fibers Using Diffusion Maps. Biomedical Imaging: From Nano to Macro, 2009 ISBI'09 IEEE International Symposium on; 2009.

Shen X, Meyer FG, editors. Nonlinear Dimension Reduction and Activation Detection for FMRI Dataset. Computer Vision and Pattern Recognition Workshop, 2006 CVPRW'06 Conference on, IEEE; 2006.

Kafieh R, Rabbani H, Kermani S. A review of algorithms for segmentation of optical coherence tomography from retina. J Med Signals Sens 2013;3:45-60.

Qu G, Zhang D, Yan P. Information measure for performance of image fusion. Electron Lett 2002;38:313-5.

Gorczynska I, Srinivasan VJ, Vuong LN, Chen RW, Liu JJ, Reichel E, et al. Projection OCT fundus imaging for visualising outer retinal pathology in non-exudative age-related macular degeneration. Br J Ophthalmol 2009;93:603-9.

Jalili J, Rabbani H, Akhlaghi M, Kafieh R, Mehridehnavi A, editors. Forming Projection Images from Each Layer of Retina Using Diffusion May Based OCT Segmentation. 2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA), IEEE; 2012.

Sinthanayothin C, Boyce JF, Cook HL, Williamson TH. Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br J Ophthalmol 1999;83:902-10.

Sekhar S, Al-Nuaimy W, Nandi AK, editors. Automated Localisation of Retinal Optic Disk Using HOUGH Transform. Biomedical Imaging: From Nano to Macro, 2008 ISBI 2008 5th IEEE International Symposium on; 2008.

Ibañez MV, Simó A. Bayesian detection of the fovea in eye fundus angiographies. Pattern Recognit Lett 1999;20:229-40.

Chaudhuri S, Chatterjee S, Katz N, Nelson M, Goldbaum M. Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans Med Imaging 1989;8:263-9.

Bonanomi MT, Nicoletti AG, Carricondo PC, Buzalaf F, Kara-José N Jr, Gomes AM, et al. Retinal thickness assessed by optical coherence tomography (OCT) in pseudophakic macular edema. Arq Bras Oftalmol 2006;69:539-44. Back to cited text no. 40

Kafieh R, Rabbani H, Abramoff MD, Sonka M. Curvature correction of retinal OCTs using graph-based geometry detection. Phys Med Biol 2013;58:2925-38.

Antony BJ, Stetson PF, Abramoff MD, Lee K, Colijn JM, Buitendijk GH, et al. Characterizing the impact of off-axis scan acquisition on the reproducibility of total retinal thickness measurements in sdoct volumes. Transl Vis Sci Technol 2015;4:3.

Esmaeili M, Rabbani H, Dehnavi AM. Automatic optic disk boundary extraction by the use of curvelet transform and deformable variational level set model. Pattern Recognit 2012;45:2832-42.

Alipour SH, Rabbani H, Akhlaghi M, Dehnavi AM, Javanmard SH. Analysis of foveal avascular zone for grading of diabetic retinopathy severity based on curvelet transform. Graefes Arch Clin Exp Ophthalmol 2012;250:1607-14.

Soltanipour A, Sadri S, Rabbani H, Akhlaghi M, Doost-Hosseini A, editors. Vessel centerlines extraction from fundus fluorescein angiogram based on hessian analysis of directional curvelet subbands. Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on; 2013

Chew EY, Klein ML, Ferris FL 3rd, Remaley NA, Murphy RP, Chantry K, et al. Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy. Early treatment diabetic retinopathy study (ETDRS) Report 22. Arch Ophthalmol 1996;114:1079-84.


  • There are currently no refbacks.