Study on the Dose Enhancement of Gold Nanoparticles When Exposed to Clinical Electron, Proton, and Alpha Particle Beams by Means of Geant4

Mehran Mohseni, Arezoo Kazemzadeh, Nafiseh Ataeihad, Habiballah Moradi, Akbar Aliasgharzadeh, Bagher Farhood

DOI: 10.4103/jmss.JMSS_58_19

Abstract


Background: Various factors effecting deposited energy and dose enhancement ratio (DER) in the simplified model of cell caused by the interaction of a cluster of gold nanoparticles (GNPs) with electron beams were assessed, and the results were compared with other sources through Geant4 Monte Carlo simulation toolkit. Methods: The effect of added GNPs on the DNA strand breaks level, irradiated to electron, proton, and alpha beams, is assessed. Results: Presence of GNPs in the cell makes DER value more pronounced for low-energy photons rather than electron beam. Moreover, the results of DER values did not show any significant increase in absorbed dose in the presence of GNP for proton and alpha beam. Moreover, the results of DNA break with GNPs for proton and alpha beam were negligible. It is demonstrated that as the sizes of the GNPs increase, the DER is enlarged until a certain size for 40 keV photons, while there is no striking change for 50 keV electron beam when the size of the GNPs changes. The results indicate that although energy deposited in the cell for electron beam is more than low-energy photon, DER values are low compared to photon. Conclusion: Larger GNPs do not show any preference over smaller ones when irradiated through electron beams. It is proved that GNPs do not significantly increase single-strand breaks (SSBs) and double-strand breaks during electron irradiation, while there exists a direct relationship between SSB and energy.

Keywords


Dose enhancement, Geant4, gold nanoparticles, ionizing radiation, strand break

Full Text:

PDF

References


Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 2016;66:271-89.

Su XY, Liu PD, Wu H, Gu N. Enhancement of radiosensitization by metal-based nanoparticles in cancer radiation therapy. Cancer Biol Med 2014;11:86-91.

Douglass M, Bezak E, Penfold S. Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model. Med phys 2013;40:071710.

Verkhovtsev A, McKinnon S, de Vera P, Surdutovich E, Guatelli S, Korol AV, et al. Comparative analysis of the secondary electron yield from carbon nanoparticles and pure water medium. Europ Phys J D 2015;69:1-9.

Tran HN, Karamitros M, Ivanchenko VN, Guatelli S, McKinnon S, Murakami K, et al. Geant4 monte carlo simulation of absorbed dose and radiolysis yields enhancement from a gold nanoparticle under MeV proton irradiation. Nucl Instrum Methods Phys Res Sec B 2016;373:126-39.

Casta R, Champeaux JP, Sence M, Moretto-Capelle P, Cafarelli P, Amsellem A, et al. Electronic emission of radio-sensitizing gold nanoparticles under X-ray irradiation: Experiment and simulations. J Nanoparticle Res 2014;16:1-10.

Jeynes JC, Merchant MJ, Spindler A, Wera AC, Kirkby KJ. Investigation of gold nanoparticle radiosensitization mechanisms using a free radical scavenger and protons of different energies. Phys Med Biol 2014;59:6431-43.

Polf JC, Bronk LF, Driessen WH, Arap W, Pasqualini R, Gillin M. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles. Appl Phys Lett 2011;98:193702.

Zhang SX, Gao J, Buchholz TA, Wang Z, Salehpour MR, Drezek RA, et al. Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: A monte carlo simulation study. Biomed Microdevices 2009;11:925-33.

Leung MK, Chow JC, Chithrani BD, Lee MJ, Oms B, Jaffray DA. Irradiation of gold nanoparticles by x-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Med Phys 2011;38:624-31.

Ranjbar H, Shamsaei M, Ghasemi MR. Investigation of the dose enhancement factor of high intensity low mono-energetic X-ray radiation with labeled tissues by gold nanoparticles. Nukleonika 2010;55:307-12.

Bahreyni Toossi MT, Ghorbani M, Mehrpouyan M, Akbari F, Sobhkhiz Sabet L, Soleimani Meigooni A. A Monte Carlo study on tissue dose enhancement in brachytherapy: A comparison between gadolinium and gold nanoparticles. Australas Phys Eng Sci Med 2012;35:177-85.

Shin JI, Cho I, Cho S, Kim EH, Song Y, Jung WG, et al. Simulation study of dose enhancement in a cell due to nearby carbon and oxygen in particle radiotherapy. J Korean Phys Soc 2015;67:209-17.

Zygmanski P, Liu B, Tsiamas P, Cifter F, Petersheim M, Hesser J, et al. Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles. Phys Med Biol 2013;58:7961-77.

Gao J, Zheng Y. Monte Carlo study of secondary electron production from gold nanoparticle in proton beam irradiation. Int J Cancer Therapy Oncol 2014;2:02025.

McKinnon S, Engels E, Tehei M, Konstantinov K, Corde S, Oktaria S, et al. Study of the effect of ceramic Ta2O5 nanoparticle distribution on cellular dose enhancement in a kilovoltage photon field. Phys Med 2016;32:1216-24.

Ogawa Y. Paradigm shift in radiation biology/radiation oncology-exploitation of the “H (2) O (2) Effect” for radiotherapy using low-LET (Linear Energy Transfer) radiation such as X-rays and High-energy electrons. Cancers 2016;8:28. doi: 10.3390/cancers8030028.

Tajik M, Rozatian ASH, Semsarha F. Simulation of ultrasoft X-rays induced DNA damage using the Geant4 Monte Carlo toolkit. Nucl Instrum Methods Phys Res Sec B 2015;342:258-65.

Incerti S, Baldacchino G, Bernal M, Capra R, Champion C, Francis Z, et al. The geant4-DNA Project. Int J Model Simulation Sci Comput 2010;01:157-78.

Vladimir I, Sebastien I. Geant4 standard and low energy electromagnetic libraries. EPJ Web Conf 2017;142:01016.

McNamara AL, Kam WW, Scales N, McMahon SJ, Bennett JW, Byrne HL, et al. Dose enhancement effects to the nucleus and mitochondria from gold nanoparticles in the cytosol. Phys Med Biol 2016;61:5993-6010.

Byrne HL, Domanova W, McNamara AL, Incerti S, Kuncic Z. The cytoplasm as a radiation target: An in silico study of microbeam cell irradiation. Phys Med Biol 2015;60:2325-37.

Sung W, Ye SJ, McNamara AL, McMahon SJ, Hainfeld J, Shin J, et al. Dependence of gold nanoparticle radiosensitization on cell geometry. Nanoscale 2017;9:5843-53.

Jain S, Coulter JA, Hounsell AR, Butterworth KT, McMahon SJ, Hyland WB, et al. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int J Radiat Oncol Biol Phys 2011;79:531-9.

Chow J, Leung M, Fahey S, Chithrani D, Jaffray D. Monte Carlo simulation on low-energy electrons from gold nanoparticle in radiotherapy. Journal of Physics: Conference Series. 2012;341:012012.

El Naqa I, Pater P, Seuntjens J. Monte Carlo role in radiobiological modelling of radiotherapy outcomes. Phys Med Biol 2012;57:R75-97.

Incerti S, Ivanchenko A, Karamitros M, Mantero A, Moretto P, Tran HN, et al. Comparison of GEANT4 very low energy cross section models with experimental data in water. Med Phys 2010;37:4692-708.

Nikjoo H, O'Neill P, Terrissol M, Goodhead DT. Quantitative modelling of DNA damage using Monte Carlo track structure method. Radiat Environ Biophys 1999;38:31-8.

Vernimmen F, Shmatov ML. Gold nanoparticles in stereotactic radiosurgery for cerebral arteriovenous malformations. J Bio Nanobiotechnol 2015;6:204.

Heuskin AC, Gallez B, Feron O, Martinive P, Michiels C, Lucas S. Metallic nanoparticles irradiated by low-energy protons for radiation therapy: Are there significant physical effects to enhance the dose delivery? Med Phys 2017;44:4299-312.

Chetty IJ, Curran B, Cygler JE, DeMarco JJ, Ezzell G, Faddegon BA, et al. Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys 2007;34:4818-53.

Rahman WN, Bishara N, Ackerly T, He CF, Jackson P, Wong C, et al. Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomedicine 2009;5:136-42.

Paro AD, Hossain M, Webster TJ, Su M. Monte Carlo and analytic simulations in nanoparticle-enhanced radiation therapy. Int J Nanomedicine 2016;11:4735-41.

Bolsa M, Ivosev V, Haume K, Ellis-Gibbings L, Traore A, Thakare V, et al. New Research in Ionizing Radiation and Nanoparticles: The ARGENT Project; 2017. p. 379-434.

Chow JC, Leung MK, Jaffray DA. Monte Carlo simulation on a gold nanoparticle irradiated by electron beams. Phys Med Biol 2012;57:3323-31.

Zheng XJ, Chow JC. Radiation dose enhancement in skin therapy with nanoparticle addition: A Monte Carlo study on kilovoltage photon and megavoltage electron beams. World J Radiol 2017;9:63-71.

Chang MY, Shiau AL, Chen YH, Chang CJ, Chen HH, Wu CL. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice. Cancer Sci 2008;99:1479-84.

Saied BM, Younis TA, Shbeeb AK. Mass stopping power of alpha particles in liquid water and some gases. AIP Conf Proceed 2019;2190:020041. https://doi.org/10.1063/1.5138527.

Wälzlein C, Scifoni E, Krämer M, Durante M. Simulations of dose enhancement for heavy atom nanoparticles irradiated by protons. Phys Med Biol 2014;59:1441-58.

Cai Z, Pignol JP, Chattopadhyay N, Kwon YL, Lechtman E, Reilly RM. Investigation of the effects of cell model and subcellular location of gold nanoparticles on nuclear dose enhancement factors using Monte Carlo simulation. Med Phys 2013;40:114101.

Sung W, Ye S-J, McNamara AL, McMahon SJ, Hainfeld J, Shin J, et al. Dependence of gold nanoparticle radiosensitization on cell geometry. Nanoscale. 2017;9:5843-53.

Torrisi L. Gold nanoparticles enhancing protontherapy efficiency. Recent Pat Nanotechnol 2015;9:51-60.

He C, Chow, James CL. Gold nanoparticle DNA damage in radiotherapy: A monte carlo study. AIMS Bioeng 2016;3:352-61.

Chithrani DB, Jelveh S, Jalali F, van Prooijen M, Allen C, Bristow RG, et al. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res 2010;173:719-28.

Zheng Q, Yang H, Wei J, Tong JL, Shu YQ. The role and mechanisms of nanoparticles to enhance radiosensitivity in hepatocellular cell. Biomed Pharmacother 2013;67:569-75.


Refbacks

  • There are currently no refbacks.


 

  https://e-rasaneh.ir/Certificate/22728

https://e-rasaneh.ir/

ISSN : 2228-7477