Requirement Specification and Modeling a Wearable Smart Blanket System for Monitoring Patients in Ambulance

Sorayya Rezayi, Ali Asghar Safaei, Nilofar Mohammadzadeh

DOI: 10.4103/jmss.JMSS_55_18

Abstract


Background: Nowadays, the role of smart systems and developed tools such as wearable systems for monitoring the patients and controlling their conditions consistently has increased significantly. The present research sought to identify the factors which are essential for designing a wearable smart blanket system and modeling the proposed systems. Methods: To this aim, the requirements for creating the proposed system in ambulance were described after determining the features related to wearable systems by conducting on a comparative study. First, some studies were performed to identify the wearable system development. Then, the elicited questionnaire was given to the physicians and medical informatics specialists. Finally, the extracted requirements were implemented for modeling a smart blanket system. Results: Based on the results, the wearable smart blanket system includes some specific characteristics such as monitoring the important signs, communicating with the surroundings, processing the signals instantly, and storing all important signs. In addition, they should involve some nonfunctional characteristics such as easy installment and function, interactivity, error fault tolerance, low energy consumption, and the accuracy of sign stability. Then, based on the requirements and data elements extracted from the questionnaire, the system was modeled as a detailed design of the proposed technical blanket system. Based on the results, the architecture of the designed system could provide expected scenarios by using the Active Review for Intermediate Design-oriented scenario-based evaluation method. Conclusion: Today, smart systems and tools have considerably developed in terms of monitoring the patients and controlling their conditions. Therefore, wearable systems can be implemented for monitoring the health status of patients in ambulance.


Keywords


Smart sensors and fibers, vital signs, wearable smart blanket requirements, wearable systems

Full Text:

PDF

References


Merrell RC. Concepts of telemedicine consultation. Telemed J 1998;4:277-8.

Lymberis A, De Rossi DE, editors. Wearable Health Systems for Personalized Health Management: State of the Art and Future Challenges. University of Pisa, Italy: IOS Press; 2004.

Van Langenhove L, editor. Smart Textiles for Medicine and Healthcare: Materials, Systems and Applications. Combridge, England: Elsevier; 21 February, 2007.

Shortliffe EH, Cimino JJ, editors. Biomedical Informatics: Computer Applications in Health Care and Biomedicine. Vol. 40. USA, New York: Springer Science & Business Media; 2013. p. 87.

Carr BG, Conway PH, Meisel ZF, Steiner CA, Clancy C. Defining the emergency care sensitive condition: A health policy research agenda in emergency medicine. Ann Emerg Med 2010;56:49-51.

Fitzsimmons JA. A methodology for emergency ambulance deployment. Manage Sci 1973;19:627-36.

Anliker U, Ward JA, Lukowicz P, Tröster G, Dolveck F, Baer M, et al. AMON: A wearable multiparameter medical monitoring and alert system. IEEE Trans Inf Technol Biomed 2004;8:415-27.

Eom K, Arai H. Smart blanket: Flexible and easy to couple waveguide. In: Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), IEEE Topical Conference on 2011. IEEE; 16 January, 2011. p. 15-8.

Falck T, Espina J, Ebert JP, Dietterle D. BASUMA-the sixth sense for chronically ill patients. In: Wearable and Implantable Body Sensor Networks, 2006. BSN 2006. International Workshop. IEEE; 2006. p. 4.

Lorussi F, Carbonaro N, De Rossi D, Paradiso R, Veltink P, Tognetti A. Wearable textile platform for assessing stroke patient treatment in daily life conditions. Front Bioeng Biotechnol 2016;4:28.

Mokhlespour Esfahani MI, Taghinedjad S, Mottaghitalab V, Narimani R, Parnianpour M. Novel printed body worn sensor for measuring the human movement orientation. Sens Rev 2016;36:321-31.

Chae HS, Hong JY, Cho HS, Han KH, Lee JH. An investigation of usability evaluation for smart clothing. Interact Platforms Tech 2007;4551:1053-60.

Schall MC Jr., Sesek RF, Cavuoto LA. Barriers to the adoption of wearable sensors in the workplace: A survey of occupational safety and health professionals. Hum Factors 2018;60:351-62.

Claudio D, Velázquez MA, Bravo-Llerena W, Okudan GE, Freivalds A. Perceived usefulness and ease of use of wearable sensor-based systems in emergency departments. IIE Trans Occup Ergon Hum Factors 2015;3:177-87.

Sommerville I. Software Engineering. 9th ed. Reading, MA: Addison-Wesley; 2011.

Meng Y, Choi HK, Kim HC. Exploring the user requirements for wearable healthcare systems. In: E-health Networking Applications and Services (Healthcom), 13th IEEE International Conference on 2011. IEEE; 13 Jun, 2011. p. 74-7.

Babar MA, Gorton I. Comparison of scenario-based software architecture evaluation methods. In: Software Engineering Conference, 2004 11th Asia-Pacific. IEEE; 2004. p. 600-7.


Refbacks

  • There are currently no refbacks.


 

  https://e-rasaneh.ir/Certificate/22728

https://e-rasaneh.ir/

ISSN : 2228-7477