Metal Artifact Suppression in Dental CBCT Images Using Image Processing Techniques
DOI: 10.4103/jmss.JMSS_24_17
Abstract
Keywords
Full Text:
PDFReferences
Hassan B, Jacobs R. Cone beam computed tomography-3D imaging in oral and maxillofacial surgery. Eur Med Imaging Rev 2008;1:38-40.
De Man B, Nuyts J, Dupont P, Marchal G, Suetens P. Metal streak artifacts in X-ray computed tomography: A simulation study. IEEE Trans Nucl Sci 1999;46:691-6.
Nakae Y, Sakamoto K, Minamoto T, Kamakura T, Ogata Y, Matsumoto M, et al. Clinical evaluation of a newly developed method for avoiding artifacts caused by dental fi llings on X-ray CT. Radiol Phys Technol 2008;1:115-22.
Barrett JF, Keat N. Artifacts in CT: Recognition and avoidance. Radiographics 2004;24:1679-91.
Wang Q, Li L, Zhang L, Chen Z, Xing Y, Kang K. Reducing Metal Artifacts by Pre-processing Projection Data in Dental CBCT with a Half-size Detector. In: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011 IEEE; 2011. p. 3434-7.
Goldman LW. Principles of CT: Radiation dose and image quality. J Nucl Med Technol 2007;35:213-25.
Pauwels R, Stamatakis H, Bosmans H, Bogaerts R, Jacobs R, Horner K, et al. Quantifi cation of metal artifacts on cone beam computed tomography images. Clin Oral Implants Res 2013;24 Suppl A100:94-9.
Imai K, Ikeda M, Enchi Y, Niimi T. Statistical characteristics of streak artifacts on CT images: Relationship between streak artifacts and mA s values. Med Phys 2009;36:492-9.
Sanders MA, Hoyjberg C, Chu CB, Leggitt VL, Kim JS. Common orthodontic appliances cause artifacts that degrade the diagnostic quality of CBCT images. J Calif Dent Assoc 2007;35:850-7.
Schulze R, Heil U, Gross D, Bruellmann DD, Dranischnikow E, Schwanecke U, et al. Artefacts in CBCT: A review. Dentomaxillofac Radiol 2011;40:265-73.
Soille P. Morphological Image Analysis: Principles and Applications. Springer-Verlag Berlin Heidelberg: Springer Science & Business Media; 2013.
Gonzalez R, Wintz P. Digital Image Processing. Pearson, US; 1977.
Zivkovic Z. Improved adaptive Gaussian mixture model for background subtraction. In: Pattern Recognition, 2004. ICPR 2004, Proceedings of the 17th International Conference on, IEEE. Vol. 2. 2004. p. 28-31.
Lee DS. Effective Gaussian mixture learning for video background subtraction. IEEE Trans Pattern Anal Mach Intell 2005;27:827-32.
Moon TK. The expectation-maximization algorithm. IEEE Signal Process Mag 1996;13:47-60.
Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 1979;9:62-6.
Naranjo V, Lloréns R, Alcañiz M, Lopez-Mir F. Metal artifact reduction in dental CT images using polar mathematical morphology. Comput Methods Programs Biomed 2011;102:64-74.
Haralick RM, Sternberg SR, Zhuang X. Image analysis using mathematical morphology. IEEE Trans Pattern Anal Mach Intell 1987;9:532-50.
Gonzalez CI, Melin P, Castro JR, Mendoza O, Castillo O. An improved Sobel edge detection method based on generalized type-2 fuzzy logic. Soft Comput 2016;20:773-84.
Deans SR. The Radon Transform and Some of Its Applications. Mineola, Dover Publications, INC: Mineola, New York; Courier Corporation; 2007.
Murphy LM. Linear feature detection and enhancement in noisy images via the Radon transform. Pattern Recognit Lett 1986;4:279-84.
Zhang Q, Couloigner I. Accurate centerline detection and line with estimation of thick lines using the radon transform. IEEE Trans Image Process 2007;16:310-6.
Hanbury A, Serra J. Colour image analysis in 3D-polar coordinates. In: Joint Pattern Recognition Symposium. SpringerVerlag Berlin Heidelberg; 2003. p. 124-31.
Beyerer J, León FP, Frese C. Machine Vision: Automated Visual Inspection: Theory, Practice and Applications. Springer-Verlag Berlin Heidelberg; 2015.
Liu R, Miao Q, Huang B, Song J, Debayle J. Improved road centerlines extraction in high-resolution remote sensing images using shear transform, directional morphological fi ltering and enhanced broken lines connection. J Vis Commun Image Represent 2016;40:300-11.
Abdollahzadeh M, Malekzadeh T, Seyedarabi H. Multi-focus Image Fusion for Visual Sensor Networks. In: Electrical Engineering (ICEE), 2016 24th Iranian Conference on, IEEE; 2016. p. 1673-7.
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: From error visibility to structural similarity. IEEE Trans Image Process 2004;13:600-12.
Wang Z, Bovik AC, Lu L. Why is image quality assessment so difficult? In: Acoustics, Speech, and Signal Processing (ICASSP),
IEEE International Conference on, IEEE. Vol. 4. 2002. p. IV-3313-6.
Woolson R. Wilcoxon signed rank test. Wiley Encyclopedia of Clinical Trials. John Wiley & Sonc, Inc; 2008.
Yoon BJ, Vaidyanathan PP. Wavelet-based denoising by customized thresholding. In: Acoustics, Speech, and Signal Processing, 2004. Proceedings.(ICASSP04). IEEE International Conference on, IEEE. Vol. 2. 2004. p. ii-925.
Zhao S, Robertson DD, Wang G, Whiting B, Bae KT. X-ray CT metal artifact reduction using wavelets: An application for imaging total hip prostheses. IEEE Trans Med Imaging 2000;19:1238-47.
Yaroslavsky L, Egiazarian K, Astola J. Transform domain approaches for image denoising. J Electron Imaging 2002;11:149-56.
Tuna U, Ruotsalainen U. Metal Artifact Reduction with DCT-domain Gap-fi lling Method. In: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2012 IEEE. IEEE; 2012. p. 2322-4.
Refbacks
- There are currently no refbacks.
https://e-rasaneh.ir/Certificate/22728
ISSN : 2228-7477