Optogenetics, Tools and Applications in Neurobiology

Parisa Mahmoudi, Hadi Veladi, Firooz Ghaderi Pakdel

DOI:

Abstract


Comprehension of the brain function can be helpful for therapy of neurodegenerative diseases. The brain consists of various types of neuron sets, which organize in three-dimensional complex networks and form neural circuits underlying different behaviors. The circuits act based on the patterns that encode the brain functions. Recognition of the neural patterns requires methods to manipulate the neurons. Electrical stimulation may be the most common method. However, it has significant drawbacks including failure to identify specific neurons in experiments. As an alternative, optical stimulation is a new method that acts in combination with genetic approaches. The novel, optogenetic technology makes it feasible to manipulate either the specific cell types or the neural circuits. This is associated with minimum tissue damages as well as side effects. In this study, a new technology has been introduced, and then its optical and genetical tools have been investigated.

Keywords


Cell-type specificity; neural circuit; neural probes; opsin proteins; optical manipulation; optogenetics; patterned stimulation

Full Text:

Untitled () PDF

References


Levinson DF. The genetics of depression: A review. Biol Psychiatry 2006;60:84-92.

Wisniewski A, Ksiazkiewicz B. Seizures - Symptom or cause of stroke. Przegl Lek 2014;71:193-8.

Caplan LR, van Gijn J. Stroke Syndromes. New York: Cambridge University Press 2012.

Chase A. Stroke: Improved lesion-symptom mapping in poststroke aphasia. Nat Rev Neurol 2014;10:674.

Talan J. Deep Brain Stimulation in a New Treatment Shows Promise in the Most Difficult Cases. New York, NY, USA: Dana Press; 2009.

Chou KL, Grube S, Patil P. Deep Brain Stimulation in a New Life for People with Parkinsons, Dystonia and Essential Tremor. New York, NY, USA: Demos Health; 2012.

Kandel ER, Schwartz JH, Jessel TM. Principles of Neural Science. New York: McGraw-Hill 2012.

Bear MF, Connors BW, Paradiso MA. Neuroscience: Exploring the Brain. Philadelphia: Lippincott Williams & Wilkins 2006.

Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia S, White LE. Neuroscience. Sunderland, MA: Sinauer Associates 2011.

Mainen ZA, Sejnowski TJ. Reliability of spike timing in neocortical neurons. Science 1995;268:1503-6.

Mitchell JF, Sundberg KA, Reynolds JH. Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4.

Neuron 2009;63:879-88.

Froudarakis E, Berens P, Ecker AS, Cotton RJ, Sinz FH, Yatsenko D, et al. Population code in mouse V1 facilitates readout of natural scenes through increased sparseness. Nat Neurosci 2014;17:851-7.

Averbeck BB, Latham PE, PougetA. Neural correlations, population coding and computation. Nat Rev Neurosci 2006;7:358-66.

OConnor DH, Huber D, Svoboda K. Reverse engineering the mouse brain. Nature 2009;461:923-9.

Katona G, Szalay G, Maak P, Kaszas A, Veress M, Hillier D, et al. Fast two-photon in vivo imaging with three-dimensional randomaccess scanning in large tissue volumes. Nat Methods 2012;9: 201-8.

Ahrens MB, Orger MB, Robson DN, Li JM, Keller PJ. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat Methods 2013;10:413-20.

Miyawaki A, Griesbeck O, Heim R, Tsien RY. Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci U S A 1999;96:2135-40.

Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 1997;388:882-7.

Heim N, Garaschuk O, Friedrich MW, Mank M, Milos RI, Kovalchuk Y, et al. Improved calcium imaging in transgenic mice expressing a troponin C-based biosensor. Nat Methods 2007;4:127-9.

Akemann W, Mutoh H, Perron A, Park YK, Iwamoto Y, Knopfel T. Imaging neural circuit dynamics with a voltagesensitive fluorescent protein. J Neurophysiol 2012;108: 2323-37.

Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 2013;499:295-300.

Levitz J, Pantoja C, Gaub B, Janovjak H, Reiner A, Hoagland A, et al. Optical control of metabotropic glutamate receptors. Nat Neurosci 2013;16:507-16.

Zhang F, Aravanis AM, Adamantidis A, de Lecea L, Deisseroth K. Circuit-breakers: Optical technologies for probing neural signals and systems. Nat Rev Neurosci 2007;8:577-81.

Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, et al. Multimodal fast optical interrogation of neural circuitry. Nature 2007;446:633-9.

Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 2005;8:1263-8.

Deisseroth K. Optogenetics. Nat Methods 2011;8:26-9.

Fenno L, Yizhar O, Deisseroth K. The development and application of optogenetics. Annu Rev Neurosci 2011;34:389-412.

Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K. Optogenetics in neural systems. Neuron 2011;71:9-34.

Aravanis AM, Wang LP, Zhang F, Meltzer LA, Mogri MZ, Schneider MB, et al. An optical neural interface: In vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 2007;4: S143-56.

Beltramo R, DUrso G, Dal Maschio M, Farisello P, Bovetti S, Clovis Y, et al. Layer-specific excitatory circuits differentially control recurrent network dynamics in the neocortex. Nat Neurosci 2013;16:227-34.

Jerome J, Heck DH. The age of enlightenment: Evolving opportunities in brain research through optical manipulation of neuronal activity. Front Syst Neurosci 2011;5:95.

Gradinaru V, Thompson KR, Zhang F, Mogri M, Kay K, Schneider MB, et al. Targeting and readout strategies for fast optical neural control in vitro and in vivo. Neuroscience 2007;27:14231-8.

Mattis J, Tye KM, Ferenczi EA, Ramakrishnan C, OShea DJ, Prakash R, et al. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 2011;9:159-72.

Williams JC, Denison T. From optogenetic technologies to neuromodulation therapies. Sci Transl Med 2013;5: 177-81.

Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, et al. Channelrhodopsin-1: A light-gated proton channel in green algae. Science 2002;296:2395-8.

Lanyi JK, Oesterhelt D. Identification of the retinal-binding protein in halorhodopsin. J Biol Chem 1982;257:2674-7.

Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 2003;100:13940-5.

Lin JY, Knutsen PM, Muller A, Kleinfeld D, Tsien RY. ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 2013;16:1499-508.

Zhang F, Prigge M, Beyriere F, Tsunoda SP, Mattis J, Yizhar O, et al. Red-shifted optogenetic excitation: A tool for fast neural control derived from Volvox carteri. Nat Neurosci 2008;11: 631-3.

Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, et al. Independent optical excitation of distinct neural populations. Nat Methods 2014;11:338-46.

Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K. Bi-stable neural state switches. Nat Neurosci 2009;12:229-34.

Berndt A, Lee SY, Ramakrishnan C, Deisseroth K. Structureguided transformation of channelrhodopsin into a light-activated chloride channel. Science 2014;344:420-4.

Bovetti S, Fellin T. Optical dissection of brain circuits with patterned illumination through the phase modulation of light. J Neurosci Methods 2015;241:66-77.

Packer MA, Roska B, Hausser M. Targeting neurons and photons for optogenetics. Nat Neurosci 2013;16:805-15.

Warden MR, Cardin JA, Deisseroth K. Optical neural interfaces. Annu Rev Biomed Eng 2014;16:103-29.

Zhang F, Gradinaru V, Adamantidis AR, Durand R, Airan RD, de Lecea L, et al. Optogenetic interrogation of neural circuits: Technology for probing mammalian brain structures. Nat Protoc 2010;5:439-56.

Pashaie R, Falk R. Single optical fiber probe for fluorescence detection and optogenetic stimulation. IEEE Trans Biomed Eng 2013;60:268-80.

Zorzos AN, Boyden ES, Fonstad CG. Multiwaveguide implantable probe for light delivery to sets of distributed brain targets. Opt Lett 2010;35:4133-5.

Zorzos AN, Scholvin J, Boyden ES, Fonstad CG. 3-Dimensional multiwaveguide probe array for light delivery to distributed brain circuits. Opt Lett 2012;37:4841-3.

Clements IP, Gnade A, Rush A, Patten C, Twomey M, Kravitz A. Miniaturized LED sources for in vivo optogenetic experimentation. Proc SPIE 2013;8586:85860.

Pashaie R, Anikeeva P, Lee JH, Prakash R, Yizhar O, Prigge M, et al. Optogenetic brain interfaces. IEEE Rev Biomed Eng 2014;7:3-30.

Smedemark-MarguliesN,Trapani JG.Tools,methods,andapplications for optophysiology in neuroscience. Front Mol Neurosci 2013;6:18.

Wang K, Liu Y, Li Y, Guo Y, Song P, Zhang X, et al. Precise spatiotemporal control of optogenetic activation using an acoustooptic device. PLoS One 2011; 6: e 28468.

Avants BW,MurphyDB, Dapello JA, Robinson JT. Neuro PG: open source software for optical pattern generation and data acquisition. Front Neuroeng 2015;8:1.

Lutz C, Otis TS, DeSars V, Charpak S, DiGregorio DA, Emiliani V. Holographic photolysis of caged neurotransmitters. Nat Methods 2008;5:821-7.

Nikolenko V, Watson BO, Araya R, Woodruff A, Peterka DS, Yuste R. SLM microscopy: Scanless two-photon imaging and photostimulation with spatial light modulators. Front Neural Circuits 2008;2:5.

Introduction to Digital Micromirror Device (DMD) Technology, DMD 101: Application Report. Texas: Texas Instruments Inc.; 2008.

Dudley D, Duncan W, Slaughter J. Emerging digital micromirror device (DMD) applications. Proc SPIE 2003;4985:14-25.

Leifer AM, Fang-Yen C, Gershow M, Alkema MJ, Samuel AD. Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans. Nat Methods 2011;8:147-52.

McNaughton BL, OKeefe J, Barnes CA. The stereotrode: A new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J Neurosci Methods 1983;8:391-7.

Gray CM, Maldonado PE, Wilson M, McNaughton B. Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. J Neurosci Methods 1995;63:43-54.

Kipke DR, Vetter RJ, Williams JC, Hetke JF. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. IEEE Trans Neural Syst Rehabil Eng 2003;11:151-5.

Schalk G, Leuthardt EC. Brain-computer interfaces using electrocorticographic signals. IEEE Rev Biomed Eng 2011;4: 140-54.

Viventi J, Kim DH, Vigeland L, Frechette ES, Blanco JA, Kim YS, et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci 2011;14:1599-605.

Richner TJ, Thongpang S, Brodnick SK, Schendel AA, Falk RW, Krugner-Higby LA, et al. Optogenetic micro-electrocorticography for modulating and localizing cerebral cortex activity. J Neural Eng 2014;11:016010.

Cheng MY, Aswendt M, Steinberg GK. Optogenetic approaches to target specific neural circuits in post-stroke recovery. Neurotherapeutics 2016;13:325-40.


Refbacks

  • There are currently no refbacks.


 

  https://e-rasaneh.ir/Certificate/22728

https://e-rasaneh.ir/

ISSN : 2228-7477