Predictive Control of the Blood Glucose Level in Type I Diabetic Patient Using Delay Differential Equation Wang Model
DOI:
Abstract
Keywords
References
Hovorka R, Canonico V, Chassin LJ, Haueter U, Massi-Benedetti M, Orsini Federici M, et al. Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol Meas 2004;25:905-20.
Wang H, Li J, Kuang Y. Mathematical modeling and qualitative analysis of insulin therapies. Math Biosci 2007;210:17-33.
Wang H, Li J, Kuang Y. Enhanced modelling of the glucose-insulin system andits applicationsininsulintherapies. JBiol Dyn 2009;3:22-38.
Wu Z, Chui CK, Hong GS, Khoo E, Chang S. Glucose-insulin regulation model with subcutaneous insulin injection and evaluation using diabetic inpatients data. Comput Methods Programs Biomed 2013;111:347-56.
Sorensen JT. A physiologic model of glucose metabolism in man and its use to design and assess improved insulin therapies for diabetes. [Doctoral Dissertation]. Massachusetts Institute of Technology; 1985.
Toli IM, Mosekilde E, Sturis J. Modeling the insulin-glucose feedback system: The significance of pulsatile insulin secretion. J Theor Biol 2000;207:361-75.
Engelborghs K, Lemaire V, Belair J, Roose D. Numerical bifurcation analysis of delay differential equations arising from physiological modeling. J Math Biol 2001;42:361-85.
Bennett DL, Gourley SA. Asymptotic properties of a delay differential equation model for the interaction of glucose with plasma and interstitial insulin. Appl Math Comput 2004;151:189-207.
Li J, Kuang Y, Mason CC. Modeling the glucose-insulin regulatory system and ultradian insulin secretory oscillations with two explicit time delays. J Theor Biol 2006;242: 722-35.
Marchetti G, Barolo M, Jovanovic L, Zisser H, Seborg DE. An improved PID switching control strategy for type 1 diabetes. IEEE Trans Biomed Eng 2008;55:857-65.
Femat R, Ruiz-Velazquez E, Quiroz G. Weighting restriction for intravenous insulin delivery on T1DM patient via control. IEEE Trans Autom Sci Eng 2009;6:239-47.
Kienitz KH, Yoneyama T.A robust controller forinsulin pumps based on H-infinity theory. IEEE Trans Biomed Eng 1993;40:1133-7.
Goh W, Pasquier M, Quek C. Adaptive control of infusion pump for Type-I diabetes control using a self-tuning regulator. 10th International Conference on Control, Automation, Robotics and Vision, 2008. ICARCV 2008, IEEE. December 17, 2008 p. 1379-84.
Chase JG, Wake GC, Lam ZH, Lee JY, Hwang KS, Shaw G. Steady-state optimal insulin infusion for hyperglycemic ICU patients. 7th International Conference on Control, Automation, Robotics and Vision, 2002. ICARCV 2002, vol. 3. IEEE. December 02, 2002, p. 1168-73.
Li C, Hu R. Simulation study on blood glucose control in diabetics. The 1st International Conference on Bioinformatics and Biomedical Engineering, 2007. ICBBE 2007, IEEE. July 06, 2007, p. 1103-6.
Ibbini MS, Masadeh MA. A fuzzy logic based closed-loop control system for blood glucose level regulation in diabetics. J Med Eng Technol 2005;29:64-9.
Yasini S, Naghibi-Sistani MB, Karimpour A. Active insulin infusion using fuzzy-based closed-loop control. 3rd International Conference on Intelligent System and Knowledge Engineering, 2008. ISKE 2008, vol. 1. IEEE. November 17, 2008, p. 429-34.
Marchetti G, Barolo M, Jovanovi L, Zisser H, Seborg DE. A feedforward-feedback glucose control strategy for type 1 diabetes mellitus. J Process Control 2008;18:149-62.
Lee H, Bequette BW. A closed-loop artificial pancreas based on model predictive control: Human-friendly identification and automatic meal disturbance rejection. Biomed Signal Process Control 2009;4:347-54.
Abu-Rmileh A, Garcia-Gabin W. A gain-scheduling model predictive controller for blood glucose control in type 1 diabetes. IEEE Trans Biomed Eng 2010;57:2478-84.
Zarkogianni K, Vazeou A, Mougiakakou SG, Prountzou A, Nikita KS. An insulin infusion advisory system based on autotuning nonlinear model-predictive control. IEEE Trans Biomed Eng 2011;58:2467-77.
Ottavian M, Barolo M, Zisser H, Dassau E, Seborg DE. Adaptive blood glucose control for intensive care applications. Comput Methods Programs Biomed 2013;109:144-56.
Findeisen R, Allgower F. An introduction to nonlinear model predictive control. 21st Benelux Meeting on Systems and Control, vol. 11. March 19, 2002 p. 119-41.
Al-Fandi M, Jaradat MA, Sardahi Y. Optimal PID-fuzzy logic controller for type 1 diabetic patients. 2012 8th International Symposium on Mechatronics and its Applications (ISMA). IEEE. April 10, 2012 p. 1-7.
Toffanin C, Messori M, Di Palma F, De Nicolao G, Cobelli C, Magni L. Artificial pancreas: Model predictive control design from clinical experience. J Diabetes Sci Technol 2013;7:1470-83.
Hovorka R, Kremen J, Blaha J, Matias M, Anderlova K, Bosanska
L, et al. Blood glucose control by a model predictive control algorithm with variable sampling rate versus a routine glucose management protocol in cardiac surgery patients: A randomized controlled trial. J Clin Endocrinol Metab 2007;92:2960-4.
Refbacks
- There are currently no refbacks.
https://e-rasaneh.ir/Certificate/22728
ISSN : 2228-7477