Analysis of Fundus Fluorescein Angiogram based on the Hessian Matrix of Directional Curvelet Sub-bands and Distance Regularized Level Set Evolution

Asieh Soltanipour, Saeed Sadri, Hossein Rabbani, Mohammad Reza Akhlaghi



This paper presents a new procedure for automatic extraction of the blood vessels and optic disk (OD) in fundus fluorescein angiogram (FFA). In order to extract blood vessel centerlines, the algorithm of vessel extraction starts with the analysis of directional images resulting from sub‑bands of fast discrete curvelet transform (FDCT) in the similar directions and different scales. For this purpose, each directional image is processed by using information of the first order derivative and eigenvalues obtained from the Hessian matrix. The final vessel segmentation is obtained using a simple region growing algorithm iteratively, which merges centerline images with the contents of images resulting from modified top‑hat transform followed by bit plane slicing. After extracting blood vessels from FFA image, candidates regions for OD are enhanced by removing blood vessels from the FFA image, using multi‑structure elements morphology, and modification of FDCT coefficients. Then, canny edge detector and Hough transform are applied to the reconstructed image to extract the boundary of candidate regions. At the next step, the information of the main arc of the retinal vessels surrounding the OD region is used to extract the actual location of the OD. Finally, the OD boundary is detected by applying distance regularized level set evolution. The proposed method was tested on the FFA images from angiography unit of Isfahan Feiz Hospital, containing 70 FFA images from different diabetic retinopathy stages. The experimental results show the accuracy more than 93% for vessel segmentation and more than 98% for OD boundary extraction.


Diabetic retinopathy, fast discrete curvelet transform, fundus fluorescein angiography, Hessian matrix, level set method

Full Text:



  • There are currently no refbacks.