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Abstract
Background: The electroencephalogram  (EEG) sonification is an audio portrayal of EEG signals 
to provide a better understanding of events and brain activity thereupon. This portrayal can be 
applied to better diagnosis and treatment of some diseases. Methods: In this study, a new method 
for EEG sonification is proposed based on extracting musical parameters and note sequences from 
the dominant frequency ratios and variations in the EEG signal. The ability of different classification 
structures in extracting musical scales and note sequences is evaluated. A  music database has been 
created to train deep structures which, after extracting the frequency sequence of each piece of music 
as input, determines the scale label and note sequence in the output. A new algorithm is developed 
to combine the outputs of the deep structures and create a playable music repertoire. Results: The 
findings indicate that the convolutional neural network  (CNN) classifier has an accuracy of 93.2% 
for the classification scales of musical pieces played in different octaves and 92.8% for pieces played 
in asymmetrical pieces. The convergence of EEG segments with musical scales is also reported for 
single channel, multi‑channel of one person, different individuals, and different databases. The long 
short‑term memory  (LSTM) structure selected with an accuracy of 89.6% determines the sequence 
of notes. Conclusion: The results show that the proposed CNN determines the appropriate and 
convergent musical scales with each EEG signal fragment and the LSTM network has a promising 
performance in converting the dominant frequency variations of EEG signals into note sequences. 
This demonstrates the good performance of the proposed sonification method.
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Introduction
The central nervous system generates the 
electrical activity of neurons, enabling 
information processing. This continuous 
electrical activity, measured through 
electrodes embedded in the skull, is 
recorded as electroencephalogram  (EEG) 
signals. These signals represent the sum of 
postsynaptic potentials from a large number 
of neurons.

Music, as an auditory stimulus with specific 
characteristics, has been shown to influence 
brain activity significantly. It has been 
the focus of various scientific studies due 
to its profound effect on cognitive and 
emotional processes. Understanding EEG 
signals in response to music is crucial, as 
it provides valuable insights into how the 

brain processes auditory stimuli. Many 
studies have explored this interaction, 
demonstrating the effects of music on 
EEG features such as the alpha rhythm in 
relation to tempo[1] and its role in emotional 
modulation through changes in alpha, 
theta, and gamma bands. The importance 
of music on brain activity has been further 
demonstrated through analyses of flash 
music,[2] the intensity of music practice 
across expertise levels,[3] and the influence 
of genre and speed.[4]

Relevance of prior studies

The reviewed studies provide significant 
insights into the connection between music 
and brain activity. For example, research on 
tempo and genre[5] highlights the influence 
of music on alpha and beta rhythms, while 
Banerjee et al.[6] showed that emotion‑based 
brain activities are enhanced by listening 
to music. Studies such as Jenni et al.[7] 
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explored how musical expertise impacts EEG signals, 
demonstrating distinct differences among nonmusicians, 
amateurs, and professionals. The application of independent 
component analysis to EEG signals recorded during music 
playback has revealed how modes and speeds influence 
brainwave patterns.[8]

Sonification techniques have also been extensively applied 
for clinical and therapeutic purposes.[9] For instance, EEG 
signal analysis has been used to diagnose congenital 
amusia,[10] evaluate anesthesia during surgery,[11] and detect 
epilepsy.[12] The effect of music on brain processes related 
to flash prediction,[13] as well as its role in controlling 
stress levels[14] and aiding in emotional regulation,[15] 
has been explored. Research has also focused on the 
real‑time adjustment of musical parameters to optimize the 
therapeutic benefits of music.[16]

Despite these advances, gaps remain in the field.[17-19] 
Most studies employ simplified approaches, such as 
single‑parameter mappings,[19-23] or focus on specific aspects 
such as amplitude and intensity. In addition, although some 
studies combine EEG with other imaging modalities such as 
functional magnetic resonance imaging,[24] these approaches 
are not yet widespread. Comprehensive frameworks for 
EEG‑to‑music conversion that incorporate temporal and 
frequency features are lacking, leaving room for significant 
improvement in this area.[25-31]

Research aim

The primary aim of this study is to address these limitations 
by proposing a novel framework for EEG‑to‑music 
conversion. This framework will utilize advanced, 
multi‑parameter mappings that incorporate frequency, 
temporal, and statistical features to create richer and more 
meaningful musical outputs. By leveraging these features, 
the study seeks to bridge the gap between neuroscience and 
musicology, offering enhanced applications in diagnosis, 
treatment, and therapeutic interventions.

In this study, a deep neural intelligent system is presented 
to make music from the EEG signal, where, first, a database 
containing note sequences and different pitches are formed; 
next, according to this time–frequency changes, a deep 
neural convolutional neural network  (CNN) network is 

trained to determine the scale music and an RNN is trained 
to determine the sequences notes. The trained neural 
networks extract scale and sequence notes from the EEG 
signal, and then, a multi‑step algorithm converts the output 
labels of the networks into a playable music repertoire. 
A  sequence of 7 consecutive notes, each at a specific 
frequency distance from the main note  (tonic), is called 
a musical scale. The scale in music expresses the mood 
and notes used in it and is the most important adjustable 
parameter in creating a piece of music. Furthermore, each 
note has a specific spectral space that has the most power 
at a specific frequency, which is why a note is tuned to that 
frequency  (for example, A is 440  Hz). The sequence of 
notes represents the sound waves with specific frequencies 
that create a piece of music and frequency sequence refers 
to the frequencies of different notes in succession.

The general structure of this article is as follows:

In the method section, the music databases‑making procedure 
and EEG databases, preprocessing of each, the method of 
extracting time–frequency sequences and processing, the 
applied and designed classifications, and the method of 
making music repertoire from output signals are described. 
In the results section, the detection percentages of tonal pitch 
and note sequence of music signals are assessed in different 
conditions and the degree of EEG signals convergence into 
music pitch for time, channel, people, and different databases 
is expressed subject to different situations and at the end, the 
results are discussed and concluded.

Methods
The general research method consisting of segmentation 
of EEG signal, preprocessing method, and extracting 
time–frequency sequences for pitch and note sequence 
detection and classification. The stages are shown in 
Figure  1. After determining the final note sequence, the 
proposed method of making a musical repertoire from the 
outputs of the classification structure is described.

Databases

The process of creating a music database for training 
and testing classifiers is explained below, followed by a 
description of the EEG databases utilized.

Figure 1: Diagram of the methods used to electroencephalogram sonification. EEG: Electroencephalogram
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Music database

The YAMAHA CLP electric piano, featuring precise tuning, 
was used to generate the music database. The output of the 
music pieces was recorded and transferred through a software 
interface at a sampling frequency of 44,000 Hz, in monochannel 
and 8‑bit format. Based on the structure of tonal music, the 
pieces were composed in the 12 major scales, each consisting 
of seven consecutive notes played for 250 ms, as follows:
A.	 Playing Seven Different Notes in One Scale (250 ms Each):

•	 All possible sequences of the seven notes were played, 
resulting in 5040 unique audio pieces for each scale

•	 These audio pieces were then performed across three 
octaves: 440  Hz, 220  Hz, and 880  Hz, all cantered 
on the note “La”

•	 In total, the music database contained 181,440 audio 
pieces, encompassing all combinations of seven 
notes in each of the 12 major scales across the three 
octaves. Each piece was 1.75 s long

•	 A unique number was assigned to each piano key 
corresponding to the notes, and the sequence of the 
played notes in each music piece was recorded.

B.	 Playing Fewer than Seven Notes with Combinations of 
Homonyms and Non‑Homonyms in One Scale (Variable 
Durations):
•	 Numerous combinations were possible when playing 

fewer than seven notes; however, to reduce errors in 
neural network training and classification, irregular 
pieces were avoided

•	 To create these pieces, the three most important 
notes of each scale were identified, considering the 
tonal structure and sequence of sharps and flats

•	 The following rules were applied to construct the 
sequences:

	 • � Each piece must include two or three notes from 
importance level 1

	 • � Each piece must include one or two notes from 
importance level 2

	 • � Each piece must include at least one note from 
importance level 3

	 • � Remaining notes in the sequence were filled with 
other notes from the scale.

•	 Using this method, 19,320 pieces were recorded for 
the second mode

•	 Similar to the first mode, a number was assigned to 
each piano key corresponding to the notes, and the 
sequence of the played notes was recorded.

This database provides a comprehensive and structured set 
of music pieces for use in training and testing classifiers.

The scale and its label, the notes in each scale, the sequence 
of their labels, and the important notes of each scale are 
tabulated in Table 1.

The electroencephalogram signal database

In this study, three databases are utilized to access EEG 
signals and validate the results at different database 

Table 1: Identification of labels applied for major scales‑note sequences
                                                                   Grade 1 note Grade 2 note Grade 3 note

Major Scale‑note sequence C D E F G A B C
Labels 1 3 5 6 8 10 11 1
Major Scale‑note sequence G A Si C D E # F G
Labels 2 10 12 1 3 5 7 8
Major Scale‑note sequence D E # F G A B # C D
Labels 3 5 7 8 10 12 2 3
Major Scale‑note sequence A B # C D E # F # G A
Labels 4 12 2 3 5 8 9 10
Major Scale‑note sequence E # F # G A B # C # D E
Labels 5 8 9 10 12 2 4 5
Major Scale‑note sequence B # C # D E # F # G # A B
Labels 6 2 4 5 8 9 11 12
Major Scale‑note sequence F G A b B C D E F
Labels 7 8 10 11 1 3 5 6
Major Scale‑note sequence b B C D b E F G A b B
Labels 8 1 3 4 6 8 10 11
Major Scale‑note sequence b E F G b A b B C D b E
Labels 9 6 8 9 11 1 3 4
Major Scale‑note sequence b A b B C b D b E F G b A
Labels 10 11 1 2 4 6 8 9
Major Scale‑note sequence b D b E F b G b A b B C b D
Labels 11 4 6 7 9 11 1 2
Major Scale‑note sequence b G b A b B b C b D b E F b G
Labels 12 9 11 12 2 4 6 7
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levels. The selection criteria for these databases include 
their reliability, data recording, and presentation in 
accordance with R and K[32] and/or AASM[33] standards. 
The databases are the DREAMS Subjects  (DRMS) 
Database,[34] The Sleep EDF  (S‑EDF) Database,[35] and 
ISRUC Database  (Subgroup  3, ISRUC3).[36] The details of 
the databases are tabulated in Table 2.

Preprocessing

Music signal

To ensure accurate classification, the length of each 
music piece is standardized to 1.75 s. Due to hardware 
limitations, the duration of each note is set to 250 ms. To 
address resonance from other frequencies, nonessential 
frequencies are removed using frequency filtering methods, 
with spectral preprocessing applied to the samples. 
The frequency variations of the preprocessed signal are 
illustrated in Figure 2.

Electroencephalogram signal

Frequency domain filtering

A 10th‑order Butterworth filter is applied to the EEG signal 
within the meaningful frequency range  (e.g.,  0.5–45  Hz 
for healthy individuals and similarly for pathological 
recordings).

Ensemble empirical mode decomposition with canonical 
correlation analysis method

Motion artifacts are removed using the Ensemble 
Empirical Mode Decomposition with Canonical Correlation 
Analysis  (CCA) method[37] and provided that the approach 
is valid for a single channel or at least one reliable channel. 

This method first decomposes the signal into a set of 
sub‑bands  (from high to low frequencies). After the initial 
wavelet‑based denoizing, the CCA algorithm is applied 
to calculate correlations between each sub‑band. Highly 
correlated components are retained, while less correlated 
ones are discarded.

Extracting time–frequency sequences

Frequency variations in music, such as changes in treble, 
bass, or the distance between two notes, determine the pitch 
and sequence of notes. The process of creating a music 
database includes recording note durations, note labels, 
and step labels for each piece of music. Similarly, EEG 
signals are labeled and segmented based on the dominant 
frequency band or hypnogram.

Step recognition of sequential frequencies

The notes played in a piece of music define its scale 
type, with an emphasis on tonal music. The arrangement 
of different notes determines the context of a 12‑major 
scale, where the scale detection classifier outputs 
12 distinct labels. Although each step involves a sequence 
of 7 notes (including repeated and nonrepeated notes during 
performance), the classifier input comprises 7 entries, as 
detailed below:
1.	 Filtering Frequency Resonance and Noise: To remove 

artifacts caused by frequency resonance in music or 
momentary EEG signal interference, segmented signals 
corresponding to the sleep stage or music are filtered 
based on the relevant frequency octave

2.	 Estimating Instantaneous Frequency: The instfreq 
function is used to calculate the instantaneous 
dominant sequential frequency of the filtered signal. 

Table 2: Details of electroencephalogram databases used
Dataset 
name

Criteria Epoch 
length (s)

Number of 
subjects

Recoding 
files

Age Sampling 
frequency (Hz)

EEG 
channel

Total number 
of epochs

S‑EDF R and K 30 26 34 25–96 100 Pz‑Oz 104,643
DRMS 20 20 20 20–65 200 Cz‑A1 30,401
DRMS AASM 30 20 20 20–65 200 Cz‑A1 20,265
ISRUC3 20 10 10 30–58 200 C3‑A2 8889
EEG – Electroencephalogram; DRMS – DREAMS subjects; S‑EDF – Sleep European Data Format; AASM – American academy of sleep 
medicine

Figure 2: Scalogram of the music signal before and after preprocessing
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This algorithm also outputs the time status of each 
momentary frequency, which contributes to constructing 
the note sequence and final repertoire

3.	 Clustering Frequencies: The estimated instantaneous 
frequencies are input to the K‑means clustering 
algorithm,[38] which groups the frequencies into 7 
clusters. The cluster centers and their respective weights 
(frequency counts) are determined as outputs

4.	 Frequency Normalization: Each cluster’s center 
frequency is divided by the smallest cluster center 
frequency. Musically, this represents the frequency ratio 
of each note to the first note of the octave, providing 
the intervals between notes and defining the scale.

These 7 normalized values represent the dominant frequencies 
of the music or EEG signal segments and serve as the 
classifier input, while the music scale label is the output.

Changes in note sequences

To analyze note sequences, recurrent classifiers are 
employed. The input to these classifiers is the ratio of 
each instantaneous frequency to the preceding one, which 
reflects the rate of frequency change.

In music, such changes define the pitch and indicate 
subsequent notes. The classifier output captures the number 
of note changes and the duration of each note  (or the 
constant state of instantaneous frequency). The duration 
of each note is derived from the instfreq function. The 
instantaneous frequency of a nonstationary signal is a 
time‑varying parameter that represents the signal’s average 
frequency content over time. The instfreq function estimates 
this frequency as the first conditional spectral moment of 
the signal’s time‑frequency distribution. Specifically, the 
function performs the following steps:[39]

•	 Computes the spectrogram power spectrum P  (t, f) of 
the input signal using the pspectrum function, treating it 
as the time–frequency distribution

•	 Estimates the instantaneous frequency based on the 
resulting time–frequency representation as defined in 
Eq. 1.

( ) 0
inst

0

( , )
=

( , )
fP t f df

f t
P t f df

∞

∞

∫
∫

� (1)

The following steps outline the process:
1.	 Extract Instantaneous Frequencies: Retrieve the 

sequence of instantaneous frequencies from the music 
signal

2.	 Determine Frequency Timing: Record the occurrence 
time of each frequency

3.	 Calculate Frequency Ratios: Create a sequence of ratios 
between consecutive instantaneous frequencies

4.	 Numerical Note Differences: Quantify the difference 
between consecutive notes. For example, if the first 
note is Re (3), the second note Fa (6), and the third note 
Mi  (5), the sequence would be: 5,‑1. If no frequency 
change occurs, the entry is 0

5.	 Classifier Input and Output Formation: The input 
consists of sequences of frequency ratios extracted 
through instfreq, while the output contains sequences of 
consecutive note changes as classifier labels

	 Note: After training the classifiers on music sequences, 
momentary frequency ratios from EEG signals are used 
to determine the sequence of changes or note numbers 
at the output.

6.	 Data Segmentation for Classifiers: To define the input 
size for classification systems, the extracted sequences 
are segmented into 7‑bit chunks.

This structured approach facilitates the recognition and 
classification of musical scales and note sequences, 
enabling applications in both music analysis and EEG 
signal interpretation.

Classification

In classification, the issues of determining a signal piece 
scale and the sequence of note changes of a signal piece 
are essences:

The music scale

To determine the 12 scales of the music signal and EEG 
signal, different classification structures and the designed 
CNN are applied and their results are analyzed. The 
input of these classification structures is a 7‑bit sequence 
extracted through the K‑means algorithm. The K‑means 
input is the instantaneous frequency sequences obtained 
from the music or EEG signal. To train, the music database 
containing 181,440 audio pieces including all the states of 
7 different notes placement of one step out of 12 major 
scales, in three octaves in the first mode and 19,320 pieces 
of music with different scales and repeated notes in the 
second mode. The output of the classifier structures is 
proportional to the 12‑scale label input signal. The details 
of the proposed structures of concern together with the 
regulatory parameters are tabulated in Table 3.

Designed convolutional neural network structure

A CNN is a type of deep learning model primarily used 
for processing structured grid data, such as images. It is 

Table 3: Description of control parameter of classifier 
used

Classifier Control 
parameter

Range

KNN[40] Centre number 3–7
Distance 
measure

Euclidean‑Manhattan‑ 
Minkowski

SVM[41] Kernel Linear, Gaussian, 
polynomial order 2 and 3

Decision tree[42] Structure type Subscale ‑ simple 
scale ‑ middle scale

Bagging[43] Voting method Majority vote
Boosting[43] Voting method Adaboost
SVM – Support vector machine; KNN – k-nearest neighbor
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designed to automatically and adaptively learn spatial 
hierarchies of features through convolutional layers, pooling 
layers, and fully connected layers. The convolutional layer 
applies a set of learnable filters  (kernels) to the input to 
extract features such as edges or textures. The convolution 
operation is according to Eq. 2.

( ) ( )* , = ( ). ( )
i j

f g x y f i, j g x i, y j∑∑   � (2)

Where, f(i, j) is filter  (kernel) values, g(x–i, y–j) is 
input pixel values at position (x–i, y–j). The result is 
passed through an activation function, such as ReLU 
(ReLU (x) = max (0, x)).

Pooling reduces the spatial dimensions of feature 
maps, retaining important information while reducing 
computational cost. There are two kinds of pooling 
operators, maximum and average. The fully connected 
layer maps the learned features to the output classes using 
softmax function as Eq. 3.

( )= softmaxy Wx b � (3)

Where, W, x, and b denote the weight matrix, input feature 
vector, and bias vector, respectively.

In this study, a lightweight 1D CNN is designed to improve 
the classification results. The input of this network is a 
7‑bit sequence extracted from the signal and the output is 
12‑scale labels, Figure 3.

Modifying CNN by applying cluster weight: the input of 
the classifiers is a 7‑bit sequence extracted from the K‑mean 
algorithm, while it might be one or more noise data. When 
the number of types of notes played in the music sequence 
is  <7 different notes, the input of the classifier becomes 
sensitive to the number of notes played. To improve the 
decision‑making performance, each cluster weight is applied 
in the classification. To add the cluster weight, after entering 
7 features and applying different convolutional filters, the 
weighted averaging is applied in the pooling layer, which 
corresponds to the cluster weights for each input feature. To 
check the ability of applied classifiers in step detection after 
applying pooling with weighted averaging, different classifiers 
are applied in the softmax layer and their results are reported.

Note sequence determination

Long short‑term memory  (LSTM) is a type of RNN 
capable of learning long‑term dependencies. It uses gates to 
control the flow of information and a cell state to maintain 
long‑term memory.

Forget Gate  (ft): Decides which information to forget from 
the cell state according to Eq. 4.

= ( [ ] + )t f t –1, t ff W h x b � (4)

Input Gate  (it) and Candidate Memory (Ct): Decides which 
information to add to the cell state according to Eq. 5 and 
Eq. 6, respectively.

1= ( [ ] + )t i t , t ii W h x b � (5)

1= tanh ( [ , ] )t c t t cC W h x b− � (6)

Update Cell State  (Ct): Updates the cell state with the 
forget and input gates according to Eq. 7.

1= +t t t t tC f C i C − � (7)

Output Gate  (ot) and Hidden State  (ht): Decides the output 
of the LSTM according to Eq. 8 and Eq. 9, respectively.

1= [ , ] +t o t t oo W h x b− � (8)

= tanh( )t t th o C � (9)

xt is the input at time t, ht-1 is the previous hidden state, 
Ct is the cell state at time t, Wf, Wi, Wc, Wo are the weight 
matrices, bi, bf, bc, bo are the bias terms, σ is the sigmoid 
activation function, tanh is the hyperbolic tangent activation 
function, and ⊙ denotes element‑wise multiplication.

Considering the short and long‑time dependence of the note 
sequence in a piece of music, applying an LSTM structure 
is influential in classification.[44,45] The input of this classifier 
is a 7‑bit sequence, where each bit is the instantaneous 
frequency extracted from the music signal to its previous 
instantaneous frequency ratio in the training and a similar 
7‑bit sequence extracted from the EEG signal in the test. 
The output of this classifier is a 7‑bit sequence, where the 
number assigned of each bit represents the existing note’s 
being pitch compared to the previous note. This sequence 

Figure 3: Overall structure of the designed convolutional neural network model for music scale recognition
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indicates the distance difference between the existing note 
or piano key and the previous note.

LSTM network is of RNN type[46,47] with the main 
components, a sequence input layer and a short‑term 
long‑term memory layer able to learn short or long‑term 
dependencies among successive data time steps. The 
input layer enters the sequence of time series data into 
the network and the LSTM layer learns the dependencies 
between the time steps of the successive data.

The architecture of an applicable LSTM network for music 
classification and production, where the size of the input 
sequence layer is 7 and the size of the fully connected 
layer is set to 7 numbers is shown in Figure 4.

The control parameters of the LSTM layer count, the 
neuron count, and the forgetting parameter are considered 
and reported after being assessed.

Creating a music repertoire

Determining the final scale label  (the key signature of the 
piece of music)

A scale label is selected for each signal piece, while during 
a performance of a repertoire, the scale of the whole piece 
remains unchanged. To select the dominant scale in the 
music repertoire, all the labels of the music pieces are 
applied, and the dominant scale and the key signature are 
determined through the averaging method.

In conceptual context, the convergence to a specific sound–
distance ratio indicates the frequency of the different notes 
embodied in the step and ultimately in the main key.

Location of the notes on the five carrier lines

The output of the label note sequence is the changes of 
each note concerning the previous note. If the location 
and the main number of the first note are determined on 
the musical lines, the location of the remaining notes will 
be determined as well. To determine the first note, the 
following steps are mandatory:

The frequency of the homonym notes changes at a 2:1 ratio 
in different octaves. On most musical instruments, only 5–7 
octaves can be performed. In this study, the dominant bands 
and each sleep stage, according to the frequency band of 
the brain signal and the hypnogram curve correspond to 

one octave, consequently, the octave of the first note in the 
repertoire is determined from the sleep stage label extracted 
from the hypnogram of the EEG signal. According to the 
rules of music, the first note in a repertoire is a homonym 
with the step label of that piece of music indicating that the 
position and number of the first note of the repertoire are 
determined and the other notes are determined according to 
the sequence of note changes.

Note merging

The duration of output note time stretch from NN is about 
250 ms, resembling one harp note  (the tempo in the range 
of 120 black notes per/min). The consecutive similar notes 
are changed through the merging process by considering 
their count and note marks in the repertoire. For example: If 
the consecutive notes of two similar labels are determined, 
it would convert the two harp notes into one black note, 
Figure 5.

Results
Figure  6 shows an example of instantons frequency for 
various sleep stages and corresponding notes. The duration 
of the EEG signal is 60 s  (horizontal axis of left images). 
As it can be observed, different stages represent a specific 
instantons frequency and notes.

The results of this study are of two categories:

The scale of a piece of music is an expression of the 
dominant frequency ratios in a piece of music signal. 
Considering the importance of determining the pitch in the 
construction of a piece of music, the ability of different 
classification structures and the NN designed to extract 
the musical scale should be assessed and reported. The 
classification structure should be applied in determining the 
music scale of the EEG signal, if better results are sought 
in the classification of the music signals’ scale formed 
in different modes in the music database. Selecting an 
effective structure to determine the note sequence running 
tests on recursive deep structures is of major concern. In 
this context, first, the ability of the structure with different 
parameters in determining the note sequence from the 
frequency sequences of music signals is assessed and next, 
the best structure is selected and applied to determine 
the note sequence from the frequency changes in the 
EEG signal. After assessing and selecting the appropriate 

Figure 4: Flowchart to represent the note sequence generation using the long short-term memory model. LSTM: Long short-term memory
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classification structure from the pitch and note sequence of 
the frequency sequences of music signals, the tonal pitch 
and note sequence are determined from the EEG signal 
by applying sequence to frequency EEG signal ratios. 
The criterion for reporting performance in this stage is 
the degree of convergence of the determined tonal pitch 
for each part of the EEG signal in different sleep stages, 
different standards, different channel counts, and different 
database counts to a given tonal scale.

Selecting the appropriate classifier structure for music 
signal

Assessing the ability of classifier structures in determining 
the music signals’ scale recorded in different octaves.

A step is a sequence of 7 consecutive notes, the type and 
name of which are determined according to the frequency 
ratios therein. Different classifiers are applied to determine 
the 12 music scales, and the results are assessed. The input 
of each network consists of the frequency ratios extracted 

from the recorded different octaves, centered on La 
440HZ, 220HZ, and 880HZ. The output of these networks 
consists of one of the 12‑scale labels. The criterion for 
selecting the best structure for determining the scale at this 
stage is the accurate classification of music pieces in the 
abovementioned 3 octaves. Classes and the classification 
of the multi‑octave database. This database consists of 
a random selection of 100,000 pieces of music signals in 
different octaves, and different structures are expected to 
have accurate performance in determining each music piece 
scale according to different frequency ranges, Table 4.

The ability of different structures in determining 
musical pieces’ pitch where the note weight or time 
stretch is not equal

Another criterion for selecting an effective classification 
structure in pitch classification is its ability in determining 
different pieces of music be able to determine whether all 
or part of the 7 notes of the scale are played. To set up 
a database by playing part of the notes of the step based 

Figure  5: Diagram of the methods used to generate music repertoire from electroencephalogram signal. LSTM: Long short-term memory, EEG: 
Electroencephalogram

Figure 6: (a) Left: instfreq conversion image for S1 stage. Right: music repertoire determined for 1-min S1 stage. (b) Left: Instfreq conversion image for 
S4 stage. Right: music repertoire determined for 1-min S4 stage. EEG: Electroencephalogram

ba
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on music theories in the sharps and flats sequence, many 
notes with a higher degree of importance for each step are 
selected, thus, forming different parts with different scales. 
Each input is a sequence of frequency ratios extracted from 
pieces of music with different scales. The output of the 
classifiers is the 12‑scale labels. The efficiencies of each 
classifier with the correct detection percentage of each step 
in each mode are tabulated in Table 5.

Optimal parameters of classifier in determining note 
sequence

An LSTM network is applied to determine the net sequence. 
The input of this classifier is a 7‑bit sequence, where each 
bit is the outcome of an instantaneous frequency music 
signal to its previous instantaneous frequency ratio, and 
the output is a 7‑bit sequence, where the number assigned 
to each bit represents the level of the existing note’s being 
pitch than the previous note, Table 6.

Applying the trained classification structure for the 
electroencephalogram signal

In this step, the selected structures are applied to determine 
and report the EEG signals’ note sequence and scale. 
The selected signals from different databases and the 
convergence degree of the EEG signal parts to the tonal 
music scale are assessed:

Single‑channel electroencephalogram electroencephalogram 
of one person

Each one of the 12 tonal scales is an expression of the 
dominant frequencies’ ratio in a signal. At this stage, the 
convergence of each sleep stage of one channel EEG signal 
of a selected person from the DRMS database, registered 
with ASSM and R and K standards, to one of the 12 tonal 
scales of music is assessed. The criterion for selecting one 
person from the database signals is the signal with less 
noise. Concerning the sleep stage labels of the database, 
the highest step label is determined as the main step label 
for that person, and the limits of convergence of all the 
EEG signal fragments with the main tonal scales are given 
as a percentage tabulated in Table 7.

Multi‑channels electroencephalogram of one person

In this step, the similarity degree of the selected tonal 
scales for different recording channels in each part of the 
EEG signal of the selected person is assessed in the DRMS 
database, and the similarity percentage of different tonal 
scales of channels recorded in each part of the recorded 
signal of the person are tabulated in Table 8.

Different people

In this step, different scales of sleep convergence degree 
in all people of the DRMS database concerning tonal 
scales are assessed. The main scale is determined for each 
individual and the convergence average of all sleep stages 
in the recorded signal of each individual to the subject 

tonal pitch is calculated and the findings are tabulated in 
Table 9.

Different databases

To measure the ability of this proposed method for different 
databases, the convergence of the sleep stages of all people in 
the DRMS, S‑EDF, and ISRUC databases is calculated into 
12 tonal scales and the findings are tabulated in Table 10.

Discussion
The objective of this study is to establish an EEG sonification 
framework by mapping EEG signals to musical scales using 

Table 6: Accuracy percentages for different long short‑term 
memory models to determining of the note sequence

Number 
of block

Number of hidden unit (%)
32 64 128

LSTM (2) 71.4 72.8 72.4
LSTM (3) 79.4 82.4 81.4
LSTM (4) 86.7 89.6 87.1
LSTM (5) 83.4 85.7 82.9
LSTM – Long short‑term memory

Table 4: Accuracy percentages of various classifiers in 
identifying music scales across octaves

Classifiers Octave 
with A220 

center

Octave 
with A440 

center

Octave 
with A880 

center

Multi 
octave

Best SVM 86.1 84.9 85.6 79.8
Best KNN 90.6 92.5 91.8 89.4
Best decision tree 76.4 77.6 75.9 71.6
Bagging 89.9 88.4 89.1 86.6
Boosting 97.6 96.5 96.9 95.8
Neural network 95.8 94.6 93.9 93.2
SV – Support vector machine; KNN – k-nearest neighbor

Table 5: Accuracy percentages for weighted and 
nonweighted classifiers to determining of music scales

Classifiers A piece of music 
with 7 notes per 

scale (%)

A piece of music with 
several notes of higher 

importance (%)
SVM 80.1 68.6
Weighted SVM 78.8 72.4
KNN 88.5 73.5
Weighted KNN 86.7 76.7
Decision tree 71.8 59.4
Weighted decision tree 66.4 61.7
Bagging 87.1 7103
Weighted bagging 84.8 78.1
Boosting 94.8 84.7
Weighted boosting 91.2 86.7
CNN 94.6 89.9
Weighted CNN 93.7 92.8
CNN  –  Convolutional neural network; SVM  –  Support vector 
machine; KNN – k-nearest neighbor
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classifiers. A  database of musical pieces was created to 
evaluate classifiers’ accuracy in identifying musical pitches 
across octaves. The boosting classifier achieved the highest 
accuracy  (95.8%), followed by a neural network  (93.2%). 
These models effectively distinguished musical scales under 
varying conditions, including asymmetrical sequences, by 
incorporating cluster weights and weighted average pooling, 
as shown in Table 5.

The CNN structure was tested for its ability to map 
EEG signals to musical scales. Analysis of EEG signal 
convergence, defined as the dominant frequency ratios’ 
similarity across time and channels, demonstrated a 67% 
match for scales [Table 8] and a 73% match for individual 
pitch labels  [Table  7]. This indicates the feasibility of 
using dominant frequency ratios from EEG signals to 
generate music aligned with individuals’ unique neural 
patterns.

To refine this process, an LSTM‑based model was 
developed to determine musical note sequences. This 
architecture, LSTM  (4, 64), achieved 89.6% accuracy in 
estimating sequences from frequency changes. The model 
enables constructing a musical repertoire by aligning 
note sequences with EEG‑derived dominant frequencies, 
addressing prior methods’ limitations, such as disregarding 
signal intensity and musical rules. Researchers in Moradi 
et al.[31] addressed similar challenges by decomposing EEG 
signals into frequency sub‑bands and mapping them to 
musical notes using an RNN.

Unlike earlier approaches relying on ad hoc rules, this 
study’s AI‑based method enhances EEG sonification by 
aligning frequency changes between EEG and music 
signals into a comparable range and integrating musical 
scales as critical parameters.

The findings of this study are summarized as follows:
1.	 Development of a method to analyze frequency changes 

in both music signals and EEG signals, ensuring that 
their rate of change falls within the same range

Table 7: The percentage of convergence of all electroencephalogram signals in each sleep stage with main music scales
Sleep 
stage

Main 
Scale

Data with main label Data with a difference of 2 from the 
main label

Data with more difference

R and K AASM R and K AASM R and K AASM
Awa 4 57 59 26 29 17 12
REM 2 59 63 30 27 11 10
S1 (N1) 8 64 69 31 23 5 8
S2 (N2) 7 66 73 24 25 10 2
S3 (N4) 9 70 72 28 22 2 6
S4 6 69 ‑ 20 ‑ 11 ‑
AASM – American academy of sleep medicine; REM – Rapid eye movement

Table 8: The percentage of convergence of different channels of electroencephalogram in each sleep stage with main 
music scales

Sleep 
stage

Three channels to converge one 
scale

Two channels to converge one 
scale

Each channel to converge 
different scales

R and K AASM R and K AASM R and K AASM
Awa 61 63 33 29 6 8
REM 64 62 28 35 8 1
S1 (N1) 67 66 26 27 7 7
S2 (N2) 65 60 26 26 9 14
S3 (N4) 59 58 35 24 6 18
S4 60 ‑ 36 ‑ 4 ‑
AASM – American academy of sleep medicine; REM – Rapid eye movement

Table 9: The percentage of convergence of different 
channels of electroencephalogram in each sleep stage 

with main music scales
Sleep stage Awa REM S1 (N1) S2 (N2) S3 (N4) S4
Average convergence 
of all persons

R and K 61 59 69 71 68 65
AASM 63 62 72 73 70 ‑

AASM: American academy of sleep medicine; REM; Rapid eye 
movement

Table 10: The average percentage of convergence of all 
person’s electroencephalogram signal in each sleep stage 

with main music scales in various dataset
Database Average convergence to scales

Awa REM S1 (N1) S2 (N2) S3 (N4) S4
DRMS 62 60 70 72 69 65
S‑EDF 56 52 59 54 61 58
ISRUC3 51 49 57 54 59 ‑
DRMS – DREAMS subjects; S‑EDF – Sleep European Data Format; 
REM – Rapid eye movement
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2.	 Evaluation of the ability to distinguish musical scales 
across different classes of music pieces

3.	 Design of a deep learning system with a high accuracy 
for identifying musical scales

4.	 Determination of musical note sequences using an 
LSTM‑based model

5.	 Assessment of EEG signal convergence through musical 
scales, including single‑channel fragments from one 
individual, multi‑channel signals from one individual, 
signals from different individuals, and signals from 
various databases

6.	 Creation of a functional musical repertoire generated 
from EEG signals.

Conclusion
A method for converting EEG signals to music 
(EEG sonification) is proposed, based on extracting 
musical scales, and note sequences from the ratios and 
dominant frequency changes in the EEG signals. To train 
intelligent classifiers for determining musical scales and 
note sequences, music databases recorded in various 
octaves and modes are utilized, alongside extensive EEG 
signal databases for evaluation.

The results demonstrate that the proposed method, 
combined with the designed CNN, effectively identifies the 
musical scale of music signals and the convergence of an 
individual’s EEG signal to a musical scale. Furthermore, 
the adoption of an LSTM network, selected based on the 
findings of this study, shows promising performance in 
converting dominant frequency changes in music or EEG 
signals into accurate note sequences.

It is also recommended to use neural network structures 
capable of extracting time‑based information by optimizing 
filter parameters. The process of converting EEG signals 
to music could be further enhanced by incorporating 
additional features such as rhythm, tempo, and genre 
extracted from the EEG signals.
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