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Abstract
Background: Idiopathic ventricular arrhythmia (VA) is among the common cardiac diseases, ranging 
from benign conditions to those requiring immediate medical intervention. Many VAs originate 
from the heart’s outflow tract  (OT). However, this area’s complexity and small size, along with 
other influencing external factors, pose significant challenges to accurate diagnosis. The similarity 
of the features of VAs on the electrocardiogram  (ECG) originating from the right or left side of 
the OT may lead to misdiagnosis. This study aims to detect the site of origin for VAs originating 
from the OT, which is important as a key precognition for treatment during catheter ablation. 
Methods: We perform this diagnosis using the standard 12‑lead ECG and deep learning  (DL) 
techniques without additional equipment. First, inspired by next‑generation sequencing in genetics, 
we created one‑dimensional  (1D) streams of premature beats from a public dataset of 334  patients. 
Then, to compare the performance of common 1D DL models, the data were presented to various 
models, including long short‑term memory, gated recurrent unit, and 1D convolutional neural 
network  (1D‑CNN). Results: Experimental results show that the 1D‑CNN network achieves the 
best performance, with an accuracy of 93.4% and an F1‑score of 0.9313. Conclusions: The findings 
demonstrate the effectiveness of DL in a higher level of applications, specifically in the treatment 
process, compared to conventional ECG analysis applications based on computerized methods. This 
represents a promising prospect for use in treatment processes without relying on complex and 
multifaceted diagnostic methods in the future.
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Introduction
With the continuous advancement of 
diagnostic technologies, research on 
identifying the region responsible for 
premature beats as a preablation strategy 
is increasing. Finding noninvasive methods 
with suitable diagnostic accuracy before 
performing radiofrequency ablation is 
significant, as it can increase the success 
rate of the procedure and reduce the 
duration of the treatment process and 
the risk of infection. Various approaches 
currently exist for performing this 
localization in patients with idiopathic 
ventricular arrhythmia (IVA). However, 
these approaches can be influenced by 
several factors, such as changes in lead 
positioning during electrocardiogram (ECG) 
acquisition,[1] variations in the torso from 

one individual to another, or limiting factors 
such as the need for additional equipment 
for diagnosis.[2]

In a practical and accessible approach, 
various algorithms based on 12‑lead ECG 
have been proposed to determine the 
origin of ventricular activation in human 
studies. Most studies in this field have 
aimed for optimal accuracy by conducting 
manual analyses and identifying common 
patterns.[3‑7] Yoshida et  al. demonstrated 
the effective performance of the V2S/
V3R index for differentiating between 
the left ventricular outflow tract  (LVOT) 
and the right ventricular outflow 
tract  (RVOT), independent of the site 
of the precordial transition.[8] He et  al. 
developed a preablation diagnostic model 
by analyzing various methods on data 
from 488  patients  (439  patients for RVOT 
and 49  patients for LVOT). This model 
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was based on two popular approaches, transition zone[9,10] 
and the V2S/V3R index, resulting in an LVOT detection 
sensitivity of 82% and specificity of 86%.[11]

Given the limitations of ECGs and the complexity of 
diagnosing certain regions such as outflow tract (OT), 
alternative methods such as torso imaging, noninvasive 
electrocardiographic imaging (ECGI), and view into 
ventricular onset have been recently developed.[12‑16] 
However, the use of ECGI is relatively complex, requiring 
hundreds of leads from a single patient as well as skilled 
personnel for acquisition and interpretation.[17] Considering 
the complexity, time consumption, and need for additional 
equipment in these methods, ECG‑based approaches 
continue to be widely applicable in electrophysiological 
studies because of their simplicity, accessibility, cost-
effectiveness, and acceptable accuracy.

On the other hand, attention to deep learning (DL)-
based technologies in medical applications is steadily 
increasing.[18‑22] Reports indicate that using artificial 
intelligence algorithms can achieve higher accuracy 
in classifying and detecting the origins of premature 
ventricular contractions (PVCs) compared to human 
diagnostics.[23] There has also been an increasing focus on 
computer‑based methods, particularly machine learning 
(ML) and recently DL in this field.[24‑27]

Wang et  al. proposed a two‑stage classification method 
based on feature extraction and comparison among four 
ML algorithms.[28] The researchers used the second‑stage 
algorithm to improve accuracy. The best accuracy reported 
was 76.84%. Chang et al. aimed to leverage DL to predict 
the origins of ventricular arrhythmias (VAs) involving the 
left ventricle (LV) and right ventricle (RV).[29] In their 
study, 3,628 PVCs were extracted from 731  patients, 
using a combination of two distinct datasets. A  maximum 
of 20 PVCs per patient were manually extracted, with 
data processed over  1024 slices and fed into a six‑layer 
CNN. The authors reported a sensitivity of 90.7% and a 
specificity of 92.3% for originated left‑sided VAs. Similarly, 
Nakamura et  al. performed a binary classification utilizing 
one‑dimensional convolutional neural network (1D‑CNN) 
to distinguish between RV and LV data. By extracting 464 
PVCs from 111  patients, they achieved an accuracy of 
87%.[23]

The OT is the common source of many IVAs.[30] The 
results suggest that the greatest difficulties in diagnosis 
occur within RVOT and LVOT regions, as the ECG 
features of RVOT‑VAs and LVOT‑VAs are similar, 
potentially leading to misdiagnosis.[7,31] Our study 
focuses on analyzing 12‑lead ECG as one of the most 
accessible diagnostic tools, even in less developed areas, 
to differentiate the site of occurrence of IVAs arising 
from the OT. Due to the small size of the OT and the 
complex geometry of these regions and the position of 
RVOT and LVOT relative to standard ECG leads, site 

distinction in this area presents significant challenges. 
These challenges become even more pronounced when 
the origin is positioned in certain areas of this small 
region. The placement of RVOT and LVOT in the human 
heart is illustrated in Figure 1.

The research objective is pursued by PVC extraction 
and PVC stream generation inspired by next‑generation 
sequencing (NGS). Subsequently, the performance of 
various 1D DL models will be evaluated to learn these 
streams for desired detection outcomes. Since the proposed 
method relies on detecting LVOT vs RVOT solely through 
the analysis of 12‑lead ECGs by DL approaches, the 
results are expected to contribute to the integration and 
synchronization of signal acquisition with diagnostics. This 
approach aims to standardize initial diagnostic outcomes 
across different centers, even in less developed regions, and 
promote equitable access to treatment.

The remainder of the article is organized as follows: 
Section 2 introduces material and methods. Section 3 
presents the experimental results of the implementation. 
Section 4 discusses the additional implementations 
conducted as the ablation study. Finally, Sections 5 and 6 
cover the discussion and conclusions, respectively.

Materials and Methods
Learning algorithms

In this study, three widely used DL algorithms capable of 
learning 1D sequences were employed: long short‑term 
memory (LSTM) networks, gated recurrent unit (GRU), 
and 1D‑CNN. The LSTM network[32] is a type of Recurrent 
Neural Network (RNN) that can learn features over time 
series data. An LSTM layer learns long‑term dependencies 
between time steps in sequence data. Compared to 
traditional RNNs, LSTMs can manage the retention or 
forgetting of information related to significant sections 
using control gates. Multiplicative gate units learn to 
regulate access to the constant error flow.[32] The advantage 
of LSTM networks over standard RNNs lies not only in 
the presence of control gates but also in their ability to 
prevent vanishing or exploding gradients. Furthermore, a 
bidirectional LSTM  (BiLSTM) network was also utilized. 
In this network, learning occurs in both forward and 
backward directions. The BiLSTM network performs well 
with data such as ECG, where all samples are available 
from start to finish.[33]

GRU, such as LSTM, is another type of RNN. The primary 
difference between these two networks lies in how they 
control the memory cell state. In a GRU network, a gate 
controller manages the input and forget gates and two 
vectors from the LSTM cell are combined into a single 
vector. GRUs utilize less memory, which often results in 
faster performance compared to LSTMs. GRUs can be a 
suitable alternative to LSTMs, particularly when a simpler 
architecture is desired.
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CNNs, inspired by human vision, were initially developed 
for predominantly two‑dimensional applications. In recent 
years, a newer approach has emerged for utilizing the 
feature extraction capabilities of convolutional networks 
with 1D data, such as electrical signals. The introduction 
of 1D‑CNNs has led to their increasing use in the analysis 
of 1D data.[34] CNNs leverage a hierarchical pattern in 
data analysis, gathering more complex patterns across 
various scales and enhancing filter bank approaches. 
These convolutional networks typically start with a 
convolutional layer, where the input signal passes through 
the convolutional layers to create feature maps or feature 
vectors. Subsequently, during the pooling stage, features 
are reduced, and stronger features are extracted from the 
feature maps. This process is repeated to an extent based 
on the input type to optimally derive the input motif 
with the strongest features. Finally, the resulting motif is 
presented as a feature vector to the fully connected layer, 
where the softmax function determines the final output of 
the network.

LSTM and GRU networks can retain information from 
previous time steps, whereas 1D‑CNNs, despite their 
advantage of feature extraction through convolutional 
layers, require access to the raw input data in later layers 
due to their lack of memory.

Dataset

Training the network for this application requires specialized 
data. It is essential to allocate labels following successful 
catheter ablation  (CA) and conducting patient follow‑ups 
within similar and specific time frames. Due to the 
limitations in this field, merging multiple datasets is one of 
the approaches used. However, when combining different 
datasets, particularly multicenter data, it is crucial to ensure 
that data acquisition across all collections is carried out 
under the same standard conditions. For example, the correct 
placement of the leads during ECG acquisition can affect the 
results.[35] Even if all datasets used were collected specifically 
to identify the site of origin  (SOO), it remains crucial to 
evaluate acquisition standards, conditions, environment, 
demographic characteristics of the cohort, uniformity of 
devices and processing methods, and signal digitization 
before generalizing results. In the absence of clear statements 
from dataset creators regarding these aspects, caution should 
be exercised when generalizing the results.

To the best of our knowledge, the only publicly available 
dataset for this application at the time of this research was 
recently published by Ningbo First Hospital of Zhejiang 
University.[36] As shown in Table 1, this dataset includes 
334 ECG recordings captured during instances of PVC 
and ventricular tachycardia (VT). Of the total dataset, 
77% of the recordings are attributed to RVOT, while 23% 
are associated with the LVOT. The signals are collected 
from 13 different origins within the OT. Approximately 
18% of the data do not have defined regions within the OT.

Premature ventricular contraction selection and 
preprocessing

In this application, PVC extraction is important. Inputting 
signals into the network without PVC extraction can 
lead the network to focus on nontarget features. The 
Pan‑Tompkins algorithm[36] and its generalized versions 
are among the most popular and widely utilized algorithms 
for fiducial points and QRS detection.[37‑42] However, 
achieving generalizable automatic algorithms for accurately 
extracting ectopic beats remains a challenging issue due 
to the variability in the morphology of ectopic beats from 
different origins and under varying recording conditions. 
Given the significance of input data for distinguishing 
PVCs originating from RVOT vs LVOT, this extraction has 
frequently been performed manually in many studies.

In this research, we extracted the ectopic beats visually 
and similar to a clinical process. However, rather than 
extracting only the QRS complex and providing clean data 
to the network, the extraction of PVCs was conducted 
comprehensively and included other segments. In a 
clinical setting, validated PVCs are considered based on 
the characteristics desired by specialized physicians for 
electrophysiological studies. The initial diagnostic effort 
occurs during the electrophysiological study and before any 
ablation, relying on the electrophysiologist’s experience 
and expertise.

For the analysis of candidate and confirmed PVCs, the 
extraction was performed randomly at an interval from 
one beat before to one beat after them without regard to 
fiducial or any other specific points. This extraction is such 
that PVC windows from the same origin in addition to 
different lengths and morphologies may or may not include 
a compensatory pause. Consequently, 946 complexes 
were verified under specialized supervision for final 
analysis. These complexes are not excessively clean, do 
not concentrate on a specific morphology of a PVC, and 
include additional characteristics beyond the QRS complex. 
PVC extraction from the ECG strip is shown in Figure 2.

To facilitate better comparisons, the noise reduction method 
proposed by the dataset developers was employed.[43] In 
addition, a normalization operation was uniformly applied 
to the sequences across each of the 12 leads within the 
range of  −  1, +1. This process considered the maximum 
value, typically related to the highest R peak in all leads, 
and the minimum value per 12 leads. Thus, the determined 
maximum and minimum values may originate from 
different leads. This methodology preserves the proportional 
dimensions of the waves from each lead relative to the other 
leads for each PVC, including intervals and other fiducial 
characteristics. As previously stated, maintaining these ratios 
can be effectively useful for distinguishing RVOT vs LVOT.

In the proposed method, while maintaining the ratios 
during normalization and leveraging the features and 
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capabilities of DL, we do not initially focus on specific 
selected leads or measure selected morphologies in some 
leads compared to others. Instead, we allow the network 
to access all ratios in comparison to one another, enabling 
it to learn features across the entire PVC stream without 
performing manual feature extraction. Samples of PVCs 
originating from different and common sites are displayed 
simultaneously for all 12 leads in Figure  3. Visual 
similarities in the structure of PVCs from different sites 
and morphology differences for PVCs originating from 
common foci are observed in this figure. As illustrated in 
Figure  3, one of the complexities of diagnosis is the high 
morphological similarity of certain PVCs originating from 
OT. Furthermore, recognizing regions for which no specific 
origin has been recorded according to clinical standards 
in this dataset can complicate diagnosis, particularly 
if these regions are close to one another or exhibit 
significant similarity to foci on the opposite side. Finally, 
the windowed signals were uniformly downsampled from 
2000 Hz to 500 Hz.

Preparing input data for the network

Although the disentangling of variations in the data is 
often regarded as a natural capability of deep neural 
networks, the extent of disentangling that can be achieved 
may be limited without specific design.[26] Accordingly, 
we employed a method for representing PVCs suitable 
for 1D networks. To this end, we created streams of 
extracted PVCs. The process of generating and analyzing 
PVC streams was inspired by NGS in genetics and the 
production of messenger RNA  (mRNA) from DNA. The 
following describes how these streams are produced.

Next‑generation sequencing

NGS provides a powerful tool in genetics for examining 
the exome or even the entire genome.[44] When genes are 
analyzed in a DNA sequence, each gene consists of exon 
and intron structures arranged together. Exons contain 
crucial information within these structures. Whole exome 
sequencing  (WES)[45] is one of the latest methods in 
NGS.[46] All exons of a genome comprise an exome. In the 
WES approach, only the evaluation of exons, which hold 
significant information, is considered instead of the entire 
genome. WES allows for examining the coding regions 
of the genome to identify various genes related to specific 
disorders.[44] By arranging a sequence of exons, mRNA 
can be obtained, leading to the achievement of diagnostic 
targets through the resulting pattern matching. Therefore, 
rather than analyzing different parameters, the focus is 
intensified solely on the extracted exome. This process is 
illustrated in Figure 4.

Premature ventricular contraction streams generation

In the previous step, PVCs were extracted. This extraction 
approach, which does not precisely determine the start 
and end points based on the morphology of the PVCs and 

does not focus solely on the QRS, aims to minimize the 
detrimental effects on network diagnosis while preserving 
the beneficial impacts of the fiducial points. Introducing 
these factors into the network can expose the model to 
diverse states during learning, thereby reducing interpatient 
effects and the impact of distance‑based decisions in 
complexes with well‑defined start and end points on the 
diagnosis. This approach is useful for scenarios involving 
compensation pause with variable length, the presence or 
absence of the P wave, or structural changes due to PVC 
coupling. Consequently, this method avoids using clean 
and QRS‑focused data, common in studies with similar 
objectives, or introducing nontarget features that could lead 
to artificially high diagnostic accuracy.

In this step, a sequence of PVCs from each of the 12 leads 
was generated in the order of aVF, aVL, aVR, I, II, III, 
and V1‑V6. This sequence is regarded as the base or first 
segment of the final PVC stream. Next, repetition and 
concatenation of the PVC sequences were utilized to obtain 
the PVC stream. It is evident that, depending on the initial 
segments’ lengths and the PVCs’ morphology, the streams 
will have varying lengths. In addition to the QRS complex, 
all other waves and the compensation pause significantly 
influence the final structure of a PVC stream and may 
differ from one PVC to another. All PVC streams were cut 

Figure 1: Schematic presentation of right ventricular outflow tract and left 
ventricular outflow tract positions in a lateral view of the right ventricle



Talebzadeh, et al.: DL for differentiating LVOT vs. RVOT

Journal of Medical Signals & Sensors | Volume 15 | Issue 10 | October 2025� 5

in 25,000 samples. Based on the various lengths of primary 
streams, a minimum repetition for each PVC stream was 
two times. Ultimately, a downsampling was performed 
from 500 Hz to 30 Hz.

This drastic downsampling will help maintain the effects 
of important features such as QRS morphology, gradients, 
and other significant characteristics while minimizing the 
influence of details in peaks and troughs on recognition 
and network bias, allowing broader and more prominent 
indicators to have a larger impact on network learning. 
In addition, this downsampling will significantly enhance 
learning speed and detection performance by reducing the 
search space. Excessive downsampling can cause structural 
degradation and important information loss, especially 
in complexes. It is important to note that the second 
downsampling will be applied to each final PVC stream. 
Due to the inherent differences in PVCs and the method of 
creating PVC streams, this will lead to distinct variations 
in the structure of each stream, even among PVCs with the 
same focal point.

Thus, if we consider the cut regions from all 12 channels as 
significant genomes of these signals after extracting a PVC, 
we will create a stream that contains both exons and introns. 

Due to the characteristics of ECG and PVC structure, 
performing a second downsampling step and drastically 
reducing the sample size removes some less essential 
information, and the data are effectively compressed 
while preserving the critical discriminating details. This 
second downsampling applied only to the PVC streams, 
may introduce intentional distortions, or eliminate some 
information, leading to greater differences among them. It 
is expected that through this method, strong distinguishing 
features and motifs for differentiating between RVOT and 
LVOT cases can be extracted by passing the data through 
network filters and performing pooling with an appropriate 
method. Subsequently, these streams, each containing 
1563  samples after downsampling, will be fed into a 
1D‑CNN with the proposed architecture as the primary 
approach, alongside commonly used examples from other 
1D deep networks as comparative methods, the features of 
which will be described in the next section. The proposed 
approach is illustrated in Figure 5.

Proposed model

In the 1D‑CNN approach, a convolutional network with 
nine layers was utilized. Two 1D‑CNN layers were 
responsible for extracting feature maps. Each convolutional 
layer employed a ReLU activation function, followed by 
layer normalization. The use of layer normalization not 
only accelerates the training process but also reduces the 
network’s sensitivity to initialization. The specifications of 
the layers are presented in Table 2.

An important note for achieving effective learning in the 
proposed model using the 1D‑CNN network is that the 
filter sizes must be sufficiently large. Given the structure of 
PVC streams, the filter sizes should be designed to allow 
simultaneous observation of several important features and 

Figure  2: Premature ventricular contraction extraction from 
electrocardiogram

Figure 3:  12‑lead display of premature ventricular contraction (PVC) samples originating from right ventricular outflow tract (top row) and left ventricular 
outflow tract (bottom row)
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the extraction of distinguishing characteristics. As the filters 
slide over the PVC stream, critical features throughout the 
sequence will be identified and stored in the corresponding 
feature maps, taking into account the variations present in 
different sections of each stream. Finally, by passing through 
a global max‑pooling layer, only the most prominent 
distinguishing features are determined and arranged in a 
sequence, similar to a genetic code, and the final diagnosis 
can be achieved by matching their order placement. Based 
on the essence and structure of the input PVC streams, 
this code may vary for seemingly similar segments across 
different sections. This 1D sequence will correspond to the 
motifs related to the initial 12‑channel PVCs. The graphical 
representation of the proposed model is shown in Figure 6.Figure 4: Exon graphical illustration from pre‑messenger RNA to protein

Figure 5: The proposed approach for localization of premature ventricular contractions

Figure 6: Proposed one‑dimensional convolutional neural network model representation
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In addition, we employed GRU, LSTM, and two 
widely used models based on LSTM cells: BiLSTM 
and Stacked‑BiLSTM, to determine the most suitable 
network. To achieve the optimal number of convolutional 
layers and an appropriate number of filters, these 

parameters were gradually increased over several stages. 
The hidden units in the RNN‑based models were set to 
125  (BiLSTM‑1, GRU‑1) and 250  (BiLSTM‑2, GRU‑2). 
In the Stacked‑BiLSTM model, the first layer used 250 
hidden units, while the second layer utilized 125, structured 
according to prevalent designs in the relevant literature. We 
determined the optimal hyperparameters by experimenting 
with different configurations in a trial‑and‑error manner. 
The parameters in all networks were assessed with various 
adjustments across multiple stages and are reported based 
on the highest accuracies obtained. The structures are 
provided in Figure 7.

Evaluation metrics

The models were evaluated based on classification accuracy. 
A confusion matrix was used for performance and accuracy 
evaluation. Accordingly, four parameters were considered: 
true positives (TP), true negatives (TN), false positives (FP), 

Figure 7: Structures of the Recurrent Neural Network ‑based models

Figure 8: Training and test sets situation
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and false negatives  (FN). TP represents the number of 
LVOT observations correctly identified as LVOT, while TN 
indicates the correct identification of RVOT observations. 
FP refers to the number of RVOT observations incorrectly 
identified as LVOT, and FN denotes the number of LVOT 
observations incorrectly identified as RVOT. In addition 
to accuracy, model performance was evaluated using 
specificity, sensitivity, positive predictive value  (PPV), and 
F1‑score. These measures are defined based on TP, TN, FP, 
and FN, with their relationships summarized below:

Accuracy = TP+TN
TP+TN +FP+FN

% 100� � � � (1)

Specificity = TN
TN +FP

� (2)

Sensitivity = TP
TP+FN

� (3)

PPV = TP
TP+FP � (4)

F score= TP
TP+ FP+FN

1
2

0.5
�

� � � (5)

Experimental results
The implementation was conducted on a computer with 
Core i7@2.20GHz CPU, running 64‑bit Windows 10 with 
8GB of RAM, using Matlab 2022a. The dimensions of the 
dataset were 946  ×  1563  ×  1, as previously mentioned. 
Training data were balanced to ensure uniform data 
exposure and to prevent bias toward specific samples by the 
model. Hence, the number of samples on each side of OT 
was balanced to be 50% of the total set by oversampling. 
As shown in Figure 8, 80% of the data were selected for 
training and validation, and 20% were set aside for the test, 
ensuring no overlap between the datasets.

Initial weighting was performed using the Glorot 
method.[47] The Adam Optimizer was utilized for model 
training, as it has demonstrated good performance in 

DL models. An L2 regularization value of 0.0001 was 
employed to prevent overfitting. Furthermore, a dropout rate 
of 50% was applied between learning layers and before the 
dense layer in all models. In addition to regularization and 
dropout, we implemented an early stopping strategy. Early 
stopping was applied based on the validation loss. If the 
validation loss increased, training was continued for five 
additional epochs. Training was terminated if the validation 
loss did not show improvement after these five epochs. The 
learning rate was set to 0.001, reduced by a factor of 0.7 
every five epochs. The batch size is set to 64 and models 
are trained for 100 epochs. The vanilla LSTM network did 
not achieve satisfactory results. The implementation results 
for five other architectures, based on the best outcomes 
obtained, are shown in Table 3.

As indicated in Table  3, all RNN‑based models almost 
achieved a near range of accuracy. However, in a single‑layer 
structure with the same number of neurons, the GRU 
network achieved an accuracy of 78.47%, slightly better than 
the BiLSTM model with an accuracy of 77.74%. Although 
GRU can effectively continue learning to high epochs, 
learning may stop due to slower accuracy improvement 
compared to BiLSTM. Therefore, tuning the epochs and 
learning rate with an appropriate decay rate is crucial.

The Stacked‑BiLSTM model reached an accuracy of 
79.20% and an F1‑score of 0.7833, demonstrating better 
detection compared to the single‑layer BiLSTM and GRU 
models. The proposed model using 1D‑CNN achieved 
an accuracy of 93.43%. In addition, the sensitivity, 
specificity, and F1‑score were 0.8905, 0.9781, and 0.9313, 
respectively. Compared to other architectures, simultaneous 
high accuracy and PPV in this model indicate its suitability 
for the intended detection. A  performance comparison of 
all models is shown in Figure 9.

The effect of using different layers with various kernel sizes 
in the proposed CNN model is shown in Table 4. This table 
shows performance, while the number of filters increases 
and the size of the filters decreases from one layer to the 
next. Accordingly, the best result was for the proposed 
model with two convolutional layers using kernel sizes of 
99 for the first layer and 65 for the second layer.

0

20

40

60

80

100

Accuracy (%) F1-Score (%)

BiLSTM-1 BiLSTM-2 S-BiLSTM GRU-1

GRU-2 CNN

Figure 9: Comparison of the models for site of origin classification

Figure 10: The smoothed learning curve of the proposed one‑dimensional 
convolutional neural network model for three weight initialization methods
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According to this information, the best results were 
achieved for the proposed model with a PPV of 0.976 and 
an accuracy of 0.9313.

Ablation study

In this section, we examine performance by changing 
the proposed 1D‑CNN model weight initialization. This 
contributes to a better understanding of the impact of 
different methods on accuracy. Furthermore, we assess the 
effect of the proposed data representation in the optimal 
structure.

Weight Initialization

The proposed model was trained using three weight 
initialization methods while keeping all hyperparameters 
constant. We evaluated three commonly used weight 
initializations: Glorot, He,[48] and Narrow‑Normal. 
Figure  10 illustrates learning trends showing accuracy and 
learning error over 100 epochs for different initial weights. 
As shown in the figure, learning stops earlier with the He 
method than with the other two methods. However, an 
accuracy above 91.24% with Narrow‑Normal at higher 
epochs seems achievable. The gradual increase in accuracy 
alongside a decreasing learning rate may lead to a training 
halt if the number of epochs is excessively high. The best 
result with a significant accuracy gap in fewer epochs was 
achieved when using the Glorot initialization.

Data presentation method

In this section, we evaluate the efficiency of the proposed 
method for presenting data to the network by comparing 
it with a basic approach. First, the PVC data from the 
12 leads were arranged similarly to primary streams. 
All resulting 1D sequences were equalized in length by 
applying zero padding on the left side. Subsequently, all 
data were downsampled to 30  Hz, and training and test 
sets were presented to the proposed network. The accuracy 
of the basic approach was 89.78%. This finding suggests 
that extracting distinguishing features between RVOT and 
LVOT by repeatedly crossing from limb leads to chest 
leads and vice versa, as proposed, can be an effective 
approach for achieving better performance.

Discussion
Based on the results obtained in previous studies and 
considering the anatomical position of the OT within the 
heart and its location relative to the leads, RVOT exhibits 
the most overlap in diagnostic errors with LVOT. This is a 
significant challenge for differentiation, particularly in the 
cusps and this indistinguishable problem always requires 
further mapping in clinical practice to determine the 
activation origin.[23,27,29]

Table 5 compares the results of this study with other research 
focused on localizing the origin of activation within the OT 
using ECG. The number of studies that have independently 

and specifically addressed the differentiation of RVOT 
and LVOT using computational algorithms, particularly 
DL, remains limited. In most articles, PVCs arising from 
the OT are categorized collectively, or RVOT and LVOT 
differentiations are conducted alongside evaluations of 
the right and left ventricles. Given that the OT is the 
most common site for IVAs and considering its position 
and size relative to other ventricular regions, conducting 
focused studies on the differentiation between RVOT and 
LVOT could yield more accurate and reliable results. It 
is also important to note that employing algorithms for 
multi‑class differentiation across all ventricular regions, 
while treating the OT as part of this categorization, could 
lead to artificially inflated accuracy rates and diminish the 
generalizability of the reported results.

Similar to many prevalent diagnoses by computerized 
algorithms in the cardiovascular field, one of the limitations 
and ongoing challenges in related research is the limited 
number of data and reporting results based on datasets 
with an uncertain or inappropriate distribution of data 
from different origins in OT. Having samples from 
various activation sites and origins within a single dataset 
or a combination of datasets is critical, especially for 
more complex sources, where adequate data samples are 
necessary for effective training and testing.

Most studies still rely on limited sample sizes.[49‑52] 
Although the volume of analyzed data has increased in 
recent years, there is still a lack of public datasets with 
enough specialized data to compare the results of various 
methods across common datasets, especially for DL‑based 
research. As shown in Table  5, several studies have 
addressed this limitation by combining different datasets or 
employing manual labeling through human annotation. It 
is important to note that these approaches can impact the 
model’s learning process and limit the generalizability of 
its results.

Given the current limitations in accessing specialized 
data for this application, exploring various methods 
and approaches based on shared datasets can be pivotal 
in achieving optimal results. Public access to data can 
significantly enhance this process by clarifying the 
effectiveness of different methods and enabling robust 
comparisons of findings. In the present study, we utilized 
a publicly available dataset encompassing a suitable 
number and variety of PVC occurrences. As noted in 
Table  5, this approach may be more valuable than studies 

Table 1: Statistical information of the dataset
 All RVOT LVOT
Patients, n (%) 334 257 (77) 77 (23)
Age (year), mean±SD 46.1±13.1 47.5±13.4 46.2±16.5
Male, n (%) 104 (31) 65 (25) 39 (50)
RVOT – Right ventricular outflow tract; LVOT – Left ventricular 
outflow tract; SD – Standard deviation
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relying on simulated ECG signals or entirely personalized 
datasets or datasets with fewer data, thereby offering better 
opportunities for comparative analysis in future research.

The results of this study demonstrate the applicability and 
effectiveness of DL in identifying the SOO for PVCs. 
These findings are consistent with related studies.[25,26,29] 
However, ECG data analysis, whether performed using 
12‑lead recordings or 2D images,[29] tends to be more 
time‑consuming compared to the 1D data approach utilized 
in this research. In addition, we applied a strong 
compression step to reduce the number of samples. 
Ultimately, a Global Max‑Pooling layer was used to extract 
a condensed stream of the most significant indicators for 
PVC classification.

In ML‑based methods,[23,24,27] manual feature extraction can 
be time‑intensive, and focusing on fiducial points based 
on the morphology of PVCs often necessitates extensive 
trial and error. Nonetheless, ML algorithms can learn 
from fewer data based on the features extracted. However, 
in the research conducted by Zheng et  al., there is a risk 
and possibility of adverse bias due to the small number of 
LVOT class samples compared to RVOT in the test.[53]

Avoiding manual feature extraction, along with reducing 
the computational load through analyzing 1D sequences 
with reduced samples and using widely used 1D deep 
network models, can provide two advantages of appropriate 

accuracy and speed together. In this study, DL models based 
on LSTM, GRU, and 1D‑CNN, which have demonstrated 
proven effectiveness in learning time‑series data, were 
analyzed in the intended application. According to the 
implementation results, the BiLSTM model performed 
better than LSTM, likely due to BiLSTM’s ability to learn 
bidirectional dependencies. Although the GRU model 
demonstrated the fastest performance among RNN‑based 
models due to its architectural features, the best results 
were obtained with the Stacked BiLSTM as model depth 
increased. The results indicated that the model’s learning 
ability improved by adding BiLSTM layers.

This study identified the best performance using a 1D‑CNN 
architecture with two convolutional layers. Further 
deepening of this model did not improve its accuracy. 
However, the proposed 1D‑CNN model achieved the 
highest accuracy by a significant margin compared to 
the other models. While maintaining long‑term temporal 
dependencies in the RNN‑based models did not yield similar 
discriminative power. A comparison of Tables 3 and 4 shows 
that even with a single convolutional layer, the performance 
of 1D‑CNN outperformed the Stacked BiLSTM and GRU 
models. This demonstrated the capability of 1D‑CNN to 
extract distinguishing features from the generated streams, 
for the specific purpose of this research. This aligns with 
the findings by Bai et  al., who noted that convolutional 
neural networks can perform comparably to or even better 
than RNNs in ordinary sequence modeling tasks. Moreover, 
a simple convolutional architecture can outperform 
conventional RNNs such as LSTMs across a diverse range 
of tasks and datasets.[54] The ability of 1D‑CNN to extract 
complex patterns contributes to its superior performance 
over LSTM and GRU‑based models when faced with 
more limited data. Furthermore, compared to these models, 
which learn long‑term dependencies between time steps in 
sequence data, 1D‑CNN can perform faster.

Given the significance of weight initialization and 
its impact on model learning, three commonly used 
initialization methods were compared to the proposed 
model. In the specific context of this study, the Glorot 
initialization method demonstrated superior performance 
in terms of both convergence speed and final accuracy. 
This result may be attributed to model architecture and the 
dataset used in this study. The relatively shallow depth of 

Table 2: Specifications of the proposed 1D‑convolutional 
neural network model layers and hyperparameters at 

optimal values
Layer Type Parameters
1 1D‑CNN 96/99 (n/size) convolutions with 

stride 1 and ReLU activations
2 Layer normalization ‑
3 Dropout 50%
4 1D‑CNN 180/65 (n/size) convolutions with 

stride 1 and ReLU activations
5 Layer normalization ‑
6 Max pooling 1‑D global max pooling
7 Dropout 50%
8 Dense 2/Sigmoid
9 Output Softmax
1D‑CNN – 1D‑convolutional neural network

Table 3: Implementation results
Type Accuracy (%) Specificity Sensitivity PPV F1‑score
BiLSTM‑1 76.64 0.8540 0.6788 0.8230 0.7440
BiLSTM‑2 77.74 0.8321 0.7226 0.8115 0.7645
GRU‑1 77.74 0.8394 0.7153 0.8167 0.7626
GRU‑2 78.47 0.8321 0.7372 0.8145 0.7739
Stacked BiLSTM 79.20 0.8321 0.7518 0.8175 0.7833
1D‑CNN 93.43 0.9781 0.8905 0.9760 0.9313
BiLSTM‑1 – Bidirectional long short‑term memory‑1; GRU: Gated recurrent unit; 1D‑CNN – 1D‑convolutional neural network; PPV – 
Positive predictive value
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the model and the unique characteristics of the input data 
may have contributed to a more stable training process with 
the Glorot method. Furthermore, it is important to note that 
the effectiveness of weight initialization methods may vary 
depending on hyperparameter settings, model depth, and 
even the nature of the task.

However, this study does not delve further into exploring 
the underlying mechanisms through which different weight 
initialization methods influence model performance. 
Conducting such investigations would require extensive 
experimentation with variations in hyperparameters, layer 

configurations, and model architectures, including the 
evaluation of model depth and its interaction with different 
datasets, which is planned as future work. In addition, 
we aim to evaluate the performance of our approach for 
other diagnostic tasks, such as distinguishing PVCs from 
other arrhythmias, and its potential application in broader 
healthcare contexts.

Conclusion
Accurate diagnosis within the OT, which presents various 
complexities, is vital for mitigating risks during CA 
and advising patients. In this paper, we investigated the 
performance of three independent DL networks using 
12‑lead ECG data, leveraging several robust models 
to differentiate RVOT or LVOT. The performance of 
these models was evaluated by generating PVC streams 
without solely concentrating on QRS complex separation. 
This avoids learning clean data and the limitations and 
complexities of specifying and extracting waves’ start and 
end points, such as the S wave, and focusing on specific 
parts of contractions. By reducing samples and presenting 
the data to the network in a 1D sequence, we decreased 
the computational burden. Optimal performance achieved 
with the proposed 1D‑CNN model. Accordingly, the 
proposed approach can be used not only as an accessible 

Table 4: The proposed model implementation results 
using various kernel sizes

Model 
number

CNN (filters: n/size) Accuracy (%) F1‑score

1 180/11 ‑ ‑ 82.48 0.8235
2 180/33 ‑ ‑ 84.78 0.8478
3 180/65 ‑ ‑ 85.77 0.8550
4 180/99 ‑ ‑ 87.32 0.8718
5 96/33 180/11 ‑ 87.23 0.8797
6 96/65 180/33 ‑ 92.70 0.9288
7 96/99 180/65 ‑ 93.43 0.9313
8 96/99 180/65 300/33 90.51 0.9046
CNN – Convolutional neural network

Table 5: Comparison of the proposed method with other related studies
References Dataset Annotation Target Number of 

patients
Method Network (s) Accuracy (%)

[24] Private Ablation Multi‑class (5) 87 ML SVM 88.4
[25] Private Simulation Multi‑class (25/

nonclinical)
‑/(9) DL CNN 77.7

[26] Private Ablation Left ventricular/
multi‑class (10)

39 DL CNN
SAE (LSTM‑GRU)
f‑SAE (LSTM‑GRU)

52.16–56.29

[27] DB1: Private
DB2: INCARTDB
DB3: EDGAR

Human 
annotation

Multi‑class (11) All: 249
DB1: 211
DB2: 35
DB3: 3

ML SVM
RF
GBDT
GNB

74
71.9
72.5
71.2

[53] Private+chapman‑ 
zhejiang

Ablation RVOT versus LVOT 420 ML ML 97

[23] Private Ablation Right side versus 
left side of the heart

111 ML/DL SVM
CNN

94
87

[29] Private+chapman‑ 
zhejiang

Ablation RV versus LV 643
TPE: 356
CZJ: 287

DL CNN 92

This study Chapman‑zhejiang Ablation RVOT versus LVOT 334 DL GRU
S‑BiLSTM
CNN

78.47
79.20
93.43

CNN – Convolutional neural network; RVOT – Right ventricular outflow tract; LVOT – Left ventricular outflow tract; RV – Right ventricle; 
LV – Left ventricle; BiLSTM – Bidirectional long short‑term memory; GRU: Gated recurrent unit; DL – Deep learning; ML – Machine learning; 
LSTM – Long short‑term memory; SVM - Support vector machine;TPE-Data from Taipei General Hospital; CZJ - Chapman‑zhejiang dataset; 
RF - Random forest; GNB - Gaussian naïve bayes; GBDT: - Gradient-boosting decision tree; SAE: Sequential autoencoder; f-SAE - factor 
disentangling sequential autoencoder
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method without additional equipment needed but also as 
a promising method in combination with other developing 
diagnostic methods as part of a multimodal analysis.
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