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Abstract
The brain-computer interface (BCI) technology has emerged as a groundbreaking innovation 
with profound implications across diverse domains, particularly in health care. By establishing a 
direct communication pathway between the human brain and external devices, BCI systems offer 
unprecedented opportunities for diagnosis, treatment, and rehabilitation, thereby reshaping the 
landscape of medical practice. However, despite its immense potential, the widespread adoption of 
BCI technology in clinical settings faces several challenges. These include the need for robust signal 
acquisition and processing techniques and optimizing user training and adaptation. Overcoming 
these challenges is crucial to unleashing the complete potential of BCI technology in health care 
and realizing its promise of personalized, patient-centric care. This review work underscores the 
transformative potential of BCI technology in revolutionizing medical practice. This paper offers a 
comprehensive analysis of medical-oriented BCI applications by exploring the various uses of BCI 
technology and its potential to transform patient care.
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Introduction
The brain–computer interface (BCI) 
technology has emerged as a pioneering 
innovation with profound implications 
across various domains, particularly in the 
realm of health care. By bridging the gap 
between the human brain and external 
devices, BCI systems offer innovative 
solutions for diagnosis, treatment, and 
rehabilitation, thereby transforming the 
landscape of medical practice. BCI holds 
significant importance and has made 
substantial impacts across multiple fields, 
particularly in recent years. BCI technology 
has revolutionized numerous domains 
across various fields by facilitating direct 
communication between the human brain 
and external devices.[1] Especially in health 
care, BCI has transformed diagnostics, 
treatment, and rehabilitation processes, 
offering personalized and targeted solutions 
for patients with neurological conditions 
and physical disabilities.[2] Furthermore, 
numerous other applications are found 
in fields such as gaming, education, 

and human-computer interaction (HCI), 
enhancing user experiences and fostering 
innovation.

In this review paper, we present an extensive 
analysis of BCI applications, with a 
primary focus on its pivotal role in medical 
settings. Through this comprehensive 
analysis of relevant research papers, we aim 
to explore the diverse applications of BCI 
technology and its potential to revolutionize 
patient care. Moreover, BCI applications in 
medical practice are further segmented into 
distinct categories, facilitating a systematic 
exploration of its multifaceted impacts 
on the healthcare industry. The taxonomy 
adopted in this paper includes Accessibility, 
General Medical Applications, Psychology/
Neurology, Pediatric Applications, and 
Personalized Medicine.

For this review work, PubMed was selected 
as the primary database due to its extensive 
collection of biomedical and life sciences 
literature, which is highly relevant to 
medical applications of BCI technology. 
By leveraging PubMed, the study ensures 
access to peer-reviewed articles pertinent 
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to BCI and multimodal emotion recognition in healthcare 
contexts. Supplementary databases such as Scopus, Web 
of Science, and IEEE Xplore were considered to broaden 
the scope, integrating perspectives from allied health and 
engineering. The literature review covered studies published 
from 2014 to 2024, capturing advancements in BCI and 
emotion recognition over the past decade. This timeframe 
was chosen to include the most recent developments in the 
field while allowing historical context to be considered.

The taxonomy is presented in Figure  1, including the 
number of papers reviewed in each section. The taxonomy 
outlines the distribution of reviewed papers across five 
major categories, with each category thoroughly explored. 
As illustrated in Figure  2, it ensures a comprehensive 
examination of the medical applications of BCI technology. 
The systematic review process employed the Preferred 
Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) model, which is pivotal for ensuring 
transparency and reproducibility in research.[3] This model 
was chosen for its structured framework that enhances 
the clarity and comprehensiveness of systematic reviews. 
The significance of the PRISMA model lies in its ability 
to guide researchers through each stage of the review 
process, from protocol development to reporting, thus 
minimizing bias and improving the overall quality of 
evidence synthesis.[4] Following the PRISMA method, this 
taxonomy initially involved collecting 300 papers covering 

different BCI applications. From this pool, we refined our 
focus to 220 papers specifically related to BCI in medical 
applications. Notably, this process involved filtering 
out combined applications beyond the medical scope, 
focusing solely on medical applications, both invasive 
and noninvasive. Some examples of searching methods or 
strategies using keywords and Boolean phrases in PubMed 
are as follows: “Multimodal emotion recognition,” “brain–
computer interface,” “EEG emotion recognition,” “machine 
learning” “Prosthetic control,” “brain–computer interface 
applications.” These search terms ensured the retrieval of 
articles spanning the interdisciplinary approaches necessary 
for studying BCI applications in health care.

Brain–computer Interface System
The human brain is referred to as the most sophisticated 
organ, captivating the curiosity of researchers, scholars, 
and engineers for centuries. The capabilities and intricacies 
of the human brain is a fascinating and interesting source 
of exploration, pushing the boundaries of technology and 
neuroscience. One of the most notable achievements in this 
area is the development of the BCI system, which builds 
a remarkable connection between the human brain and 
computers or machines. BCI system represents an advanced 
merging of computer science, neuroscience and engineering 
while offering the potential scopes to interact with the 
human brain or mindset with technology. This technique 

Figure 1: Brain-computer interface medical application taxonomy
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empowers individuals with several disabilities, such as lost 
motor functionalities and paralysis

At its core, BCI technology is sophisticatedly connected 
with capturing and interpreting psychological signals, 
such as electroencephalogram (EEG). These signals 
serve as a gateway to unlock the remarkable potential of 
establishing a direct connection between the human mind 
and external devices. BCI leverages the electrical activities 
generated by the brain (EEG) while decoding emotions, 
thoughts, and intentions and translating the signals into 
meaningful instructions for machines, computers, and 
prosthetic devices. It is crucial to explore the relationship 
between the physiological signals and technology 
interfaces to understand the extraordinary capabilities of 
the advancement of BCI systems. The overall process of 
integrating the BCI system for medical sector application 
with EEG signals is illustrated in Figure 3.

Integration of brain–computer interface system with 
physiological signals EEG for medical applications

The process of integrating BCI technology with 
psychological signals can be outlined as follows:
A.	 Signal acquisition: This process begins with the signal 

acquisition from EEG or ECG experiment from the 
electrodes placed on the scalp (for EEG). The electrical 
activities of the brain and heart are represented by the 
signals[5,6]

B.	 Preprocessing: The extracted signals are then 
preprocessed to remove artifacts, noise, and any unwanted 
interferences.[7] This is a crucial step that ensures that the 
data is clean enough and suitable for further analysis

C.	 Extracting features: Relevant, significant features, 
including amplitude value, components, frequency, or 
other key characteristics, are later extracted from these 
preprocessed signals, which carry insightful information 

Figure 2: PRISMA flow diagram for systematic review approach
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about the users’ condition or state[8]

D.	 Recognizing patterns: Machine learning, deep learning 
algorithms, or other pattern recognition techniques 
are employed to analyze the extracted features. These 
algorithms undergo training to identify and recognize 
signatures or patterns within the data that correspond to 
physiological or mental states[9]

E.	 Medical intervention: The BCI system makes 
determinations based on the patterns related to the 
user’s intentions or states.[10] As an illustration, it can 
determine whether the user wants to manipulate a 
cursor on a particular screen or initiate a command.
a.	 Controlling command generation: The BCI system 

converts the decision into a control command for 
an external application or device. Such command 
generation encompasses a wide range of potential 
actions, such as controlling robotic arms, computer 
cursors, wheelchairs, or any other devices or 
software that users intend to interact with

b.	 External device’s output: The generated control 
commands are transmitted to the external devices 
or applications, which subsequently carry out the 
desired actions or responses to the user’s intent

c.	 End: The BCI system continues looping through 
these stages, allowing real-time interaction between 
users and external devices/applications. The process 
operates continuously and adaptively, with the BCI 
system constantly updating its understanding of the 
user’s intentions.

Applications of Brain–computer Interface
The scope and applications of BCI are versatile within 

and beyond the medical sphere. In the medical realm, 
it has been providing hope and transformative remedies 
for individuals with profound disabilities, facilitating the 
regain of both mobility and communication skills. BCI 
systems are playing promising roles in assisting patients 
in recovering from neurological diseases and ailments.[11] 
There are numerous research works where scholars have 
worked on developing such systems. To gain deeper 
insights and understanding into the breadth of this research, 
it can be categorized into distinct taxonomies or segments.

BCI medical applications are diverse and promising, 
ranging from advancing mobility to enhancing patient 
accessibility. Numerous transformative solutions can 
improve the lives of numerous patients facing many 
complicated health issues.[12] From the perspective of 
modern real-world applications, BCI technology has 
demonstrated immense significance in assistive technology 
while providing support to people with disabilities. BCI-
controlled prosthetic devices, such as exoskeletons and 
limbs, enable the disabled to regain their motor functions 
and independence. Moreover, neuroplasticity and motor 
learning are other ground-breaking methods that provide 
real-time feedback to patients with spinal cord injuries, 
stroke, and other neurological conditions. The modern 
applications of such technology in medical domains are 
diverse, and this medical application domain can be 
further thoughtfully divided into distinct categories to 
comprehend the vast scope and significance better. The 
categories include “Accessibility,” which encompasses 
prosthetic control, rehabilitation, and wheelchair mobility 
solutions; “General Medical Applications,” which extends 
to communication support and neurological condition 

Figure 3: End to end brain-computer interface system for medical intervention
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management; and “Psychology/Neurology,” which 
delves into areas such as Alzheimer’s disease detection, 
depression assessment, emotion classification, epilepsy 
monitoring, and stress evaluation. Each of these segments 
plays an important role in harnessing the potential of BCI 
technology to enhance healthcare outcomes, from restoring 
mobility and communication abilities to advancing our 
understanding of complex neurological and psychological 
conditions.[13]

Accessibility

The objective of such studies is to research BCIs on 
patients suffering from amyotrophic lateral sclerosis (ALS), 
brain stroke, brain/spinal cord injury (SCI), cerebral 
palsy, muscular dystrophy, and so forth. BCI accessibility 
applications represent a revolutionary advancement while 
improving the lives of individuals with physical limitations 
and communication challenges.[14] One specific application 
in this regard is showcased by Manyakov et al.[15] where 
noninvasive BCIs are used based on electroencephalograms 
(EEG) recorded on the subject’s scalp, requiring no surgical 
procedure. The event-related potentials (ERPs) that were 
the focus of this study were electrophysiological responses 
to an internal or external stimulus using the P300 BCI 
response. The study was conducted using the prototype 
of a miniature EEG recording device that communicates 
wirelessly with a USB stick receiver. This accessibility 
domain can be further segmented into prosthetic control, 
rehabilitation, and wheelchair mobility solutions.

Prosthetic control

There are various techniques for controlling a prosthetic 
hand, including a shoulder harness, myo-electric control, 
and the WILMER elbow. A  shoulder harness requires 
movement of the upper arm or shoulder, while myoelectric 
control requires some nerves or muscle activity in the 
amputated extremity.[16] The WILMER elbow uses elbow 
motion to control the hand. However, these systems are 
not useful for patients with total paralysis, but an EEG-
based BCI provides a new control channel for individuals 
with severe motor impairments. This involves detecting 
motor actions from the EEG to control an externally 
powered prosthesis device during grasping. The BCI can 
be controlled by a binary output signal obtained through 
the classification of EEG patterns during hand movement 
imagination. Utilizing oscillatory EEG components as input 
signals for a BCI necessitates real-time analysis of EEG 
signals.

Guger et al.[17] combined recent BCI developments with 
modern prosthetic tools. The BCI experiment involved 
the use of EEG to control a prosthesis through binary 
output signals, obtained by classifying EEG patterns 
during imagination of left-  and right-hand movements. 
The EEG setup consisted of a minimum of two electrodes, 
positioned close to primary hand areas (C3 and C4), to 

capture oscillatory EEG components as input signals 
for the BCI. In another study, Miranda et al.[18] used 
Blackrock Microsystems NeuroPort data acquisition 
system for recording prosthetic data. It was also used in 
converting neural firing rates into functional mapping. 
For the prosthetic limb commands in endpoint velocity 
space, mathematical models were integrated into BCI 
systems to restore and/or facilitate near-natural neural and 
behavioral functions to advance neural decoder capabilities 
through multi-scale, dynamic models for the brain’s plastic 
changes.

Furthermore, Katyal et al.[19] developed a method for 
collaborating with the BCI approach for the autonomous 
control of a prosthetic limb system, enabling amputees to 
achieve more natural, efficient, and intuitive control of their 
prosthetic limbs. The project proposes a BCI system that 
uses a combination of electroencephalography (EEG) and 
electromyography (EMG) signals to facilitate the control of 
a prosthetic limb. The system uses a deep neural network 
to classify and interpret the EEG and EMG signals, 
which are then used to control the prosthetic limb in real-
time. Similarly, Laiwalla et al.[20] proposed a distributed 
wireless network of sub-mm cortical microstimulators for 
BCIs. This system aims to enhance the functionality and 
performance of BCIs by enabling precise and targeted 
neural stimulation, thereby improving the control and 
feedback provided to the user.

In another study, Chapin et al.[21] used a linear decoder to 
map the recorded neural activity to the desired movement 
of the robotic arm in real-time. The decoding algorithm 
was implemented in MATLAB software and incorporated 
a Kalman filter to estimate the state of the arm and correct 
for errors in the decoding process. The authors report 
high accuracy and low latency of the neural interface in 
controlling the robotic arm. The study suggests the potential 
of the proposed neural interface for the development of 
advanced prosthetics for individuals with motor disabilities. 
Again, Oppus et al.[22] described the design and development 
of a 3D-printed prosthetic hand that incorporates sensors 
for BCI control and a voice recognition module for voice 
commands. The authors reported successful testing of the 
prosthetic hand on a single user. This demonstrates the 
potential of this technology to improve the life quality of 
patients with upper limb amputations.

In the research works,[23-25] authors attempted to implement 
machine learning based predictive modeling for decoding 
ERPs and understand the intend of robotic arms. 
A  combination of EEG and EMG is also presented here 
to demonstrate that the use of such a BCI could improve 
the performance of a user’s control over a robotic arm. 
The results of the study from Aly et al.[24] showed that 
the hybrid BCI system using both EEG and EMG signals 
achieved an average classification accuracy of 81.9% for 
the grasping and releasing task. The extracted features from 
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both EEG and EMG signals were used to train a machine 
learning model based on a Gaussian mixture model (GMM) 
to decode the user’s intended movement.

Both invasive and noninvasive EEG techniques hold 
immense significance in clinical settings, especially 
in the domain of neuroscience and medical practice. 
Noninvasive EEG is widely used in clinical for diagnosing 
and monitoring various neurological conditions such as 
epilepsy, sleep disorders, and brain injuries. It provides 
valuable insights into brain function and helps clinicians 
make informed decisions about treatment and management 
strategies. Invasive EEG, although more invasive and 
typically reserved for specific clinical scenarios, offers 
unparalleled precision and detail in recording neural 
activity.[26] It is crucial for neurosurgical planning, 
particularly in cases where precise localization of brain 
regions is required, such as tumor resection or epilepsy 
surgery. Invasive EEG also plays a significant role in 
research settings, where it enables scientists to investigate 
the underlying mechanisms of brain function and develop 
novel treatments for neurological disorders.

While both invasive and noninvasive methods offer greater 
spatial resolution and signal quality, they require surgical 
procedures and carry associated risks. There are relatively 
fewer works focused on invasive EEG in this domain, 
indicative of the challenges and limitations associated 
with invasive procedures. For instance, Beyrouthy et al.[27] 
presented a study on EEG mind-controlled smart prosthetic 
arms, demonstrating the feasibility of utilizing invasive 
EEG for prosthetic control. However, the adoption of 
invasive EEG technologies in prosthetic applications 
remains limited due to the invasiveness of the procedures 
and the need for further research to address associated 
challenges.

Rehabilitation

BCIs have primarily been studied for the purpose of 
providing assistive technologies to individuals with severe 
motor disabilities caused by neurodegenerative diseases or 
strokes. The use of BCIs for enhancing motor and cognitive 
recovery within neurorehabilitation settings is a newly 
emerging field of research. While most rehabilitation tools 
require minimal motor control, BCIs allow patients with 
severe motor deficits to participate in therapeutic tasks. 
EEG-based paradigms include sensorimotor rhythms, slow 
cortical potentials, ERPs, and visually evoked potentials 
are commonly used in this case.[28]

Several studies have been conducted to assess cognitive 
functions in paralyzed ALS patients and in patients with 
physical disabilities due to neurological diseases.[29-33] The 
evaluation of cognitive abilities in patients with severe 
motor disabilities is a challenge and a less explored 
area, but some attempts have been made using ERPs. 
Three EEG-based modalities (SCP, SMR, and P300) are 

promising solutions for EEG-BCI system realization. While 
many studies have demonstrated successful BCI operation, 
others have shown low performance rates in terms of both 
CA and ITR.[34] P300-BCI exhibits higher ITRs but is 
greatly affected by the severity of the disease, while SMR-
based BCI systems are adaptive but have the disadvantage 
of being unreliable for some subjects. Nevertheless, game-
oriented solutions seem to be a promising way to enhance 
user motivation.[35] Despite high-performance rates in some 
studies, the majority of BCI systems and applications are 
mainly used in a research environment and have yet to be 
successfully utilized in patients’ homes for continuous and 
everyday use.[36]

Wheelchair mobility

BCI system aids in wheelchair mobility by allowing 
individuals with extreme mobility impairment to control 
the wheelchair’s movements using their brain signals. 
Users can get greater independence and improved mobility 
through this technology. Independent movement becomes 
easier for them while navigating their environment with 
ease. Researchers are conducting extensive experiments 
and clinical trials in designing such systems. In the context 
of BCI-controlled hands-free wheelchair navigation.[37,38] 
Scholars worked on developing a system to detect the 
user’s mental commands and translate them into wheelchair 
movements, allowing people with severe physical disabilities 
to operate wheelchairs easily. Permana et al.[38] worked on 
three machine learning models, namely linear discriminant 
analysis, support vector machine (SVM), and K-nearest 
neighbors (K-NN), which were trained on the EEG data to 
classify the mental tasks. The performance of the models 
was evaluated using accuracy, sensitivity, and specificity 
measures. The results showed that SVM outperformed the 
other models with an accuracy of 96.9% in classifying 
the mental tasks. The results of the study showed that the 
proposed BCI system using NeuroSky MindWave Mobile 
2 can accurately classify mental tasks with high accuracy 
using the SVM machine learning model.

There are other systems based on motor imagery task 
stimulation for individuals with severe motor impairment, 
such as ALS. In one such study Eidel et al.[39] worked on a 
participant who had restricted motor function. Vibrotactile 
stimuli were applied to four body positions of this patient, 
and EEG data were recorded from 12 positions (Fz, FC1, 
FC2, C3, Cz, C4, P3, Pz, P4, O1, Oz, and O2) using a 
g.GAMMAcap. The EEG data were filtered between 0.1 
and 30  Hz, and epochs from 100 to 800 ms around the 
stimulus onset were created, rejecting epochs as artifacts 
if they contained excessive values (±75 μV threshold). 
Similar studies were conducted by Huang et al.[40] and 
Meng et al.[41] where a hybrid BCI has been developed to 
control an integrated wheelchair and robotic arm system.

Edelman et al.[42] developed a BCI-enhanced framework 
that could achieve more than 500% efficiency in pursuing 
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continuous tasks through a real-time control robotic arm. 
Moreover, Belkacem et al.[43] have highlighted the issues 
related to age-sensitive cognitive functions and how the 
decline in memory, learning new skills, and paying attention 
to multiple tasks can affect the quality of life of older people. 
In addition, the rotation-aligned domain adaptation method 
with Riemannian mean (RMRA) can effectively handle 
cross-session and cross-subject issues in BCI, achieving 
satisfactory results in offline unsupervised and online 
experiments on different motor imagery EEG datasets.[44]

Virtual reality accessibility

Virtual reality (VR) accessibility represents a significant 
leap forward in leveraging BCI technology to enhance 
the virtual experiences of individuals with physical 
disabilities.[45] BCIs contribute to accessibility in virtual 
reality, allowing users with physical disabilities to 
interact within virtual spaces through brain signals.[46] 
This groundbreaking application empowers individuals by 
enabling interaction within virtual spaces through the 
interpretation of brain signals.

In this context, to assist people with visual impairments 
(PVI), researchers developed VRBubble, an innovative 
audio-driven virtual reality technique that offers 
information about surrounding avatars based on their social 
distances.[47] VRBubble has been evaluated by an audio 
baseline of 12 PVI through a conversation and navigation 
context. This advancement in VR accessibility not only 
promotes inclusiveness but also unlocks fresh opportunities 
for education and therapeutic applications, enhancing the 
virtual experience for a wider range of users.[48]

Augmented and alternative communication

Augmented and alternative communication (AAC) 
encompasses converting neural signals into meaningful 
communication, providing a lifeline for nonverbal 
people or facing difficulties in traditional communication 
methods. Numerous scholars have dedicated their efforts 
to developing BCI-enabled solutions in this context.[49-52] 
In one such study,[53] authors attempted to assess how 
individuals affected by ALS acquired the skill of operating 
a motor-based BCI switch within the context of a row-
column AAC scanning pattern. In addition, the study aimed 
to explore person-centered factors linked to the performance 
of BCI-AAC. Such advancement of BCI in AAC offers 
significant potential to improve individuals’ life who are 
dealing with severe conditions like ALS, cerebral palsy, or 
paralysis.[54] This technology creates new opportunities for 
self-expression and social interaction, thereby enriching the 
overall well-being of individuals facing these challenges.

General medical applications

In addition to transforming health care through advanced 
neurological assessment and understanding of cognitive 
processes, BCI technology has also made remarkable 

advancements in several other medical applications as 
well. BCI offers innovative solutions that are being used 
in understanding cognitive processes and providing new 
equipment for neurological assessment.[55-57] In the realm of 
general medical applications, significant strides have been 
developed for patients with neurological disorders, patients 
who are nonverbal or paralyzed, who have severe attacks 
from stroke and traumatic brain injuries.[58-61]

Medication optimization

In medication optimization, BCI technology is involved 
in evaluating the efficacy and potential adverse reactions 
of medications. By analyzing the brain activity patterns, 
BCI offers insights into patients’ responses to various 
medications, which might facilitate personalized treatment 
adjustment and refinement of drug regimens.[62,63] Borgheai 
et al.[61] proposed a predictive model that used a multimodal 
BCI system with functional near-infrared spectroscopy and 
EEG. Such predictive models could obtain an R-2 value of 
a maximum of 0.942 with an average performance gain of 
5.18%. Other BCI models in medication optimization include 
Pharmacovigilance BCI, Pharmacological Neuroimaging 
BCI, and Pharmacodynamic Response BCI.[64]

Pain management

BCIs contribute to pain management by monitoring 
neural signals associated with pain perception. This 
information can be used to develop personalized pain 
management strategies, including targeted drug delivery or 
neurostimulation techniques, to alleviate pain and improve 
patient comfort.[65-67]

Furthermore, BCIs can facilitate the implementation 
of neurostimulation techniques for pain management. 
Neurostimulation methods, such as spinal cord stimulation 
or transcranial magnetic stimulation, modulate neural 
activity to alleviate pain.[68] BCIs provide real-time 
feedback on pain levels, allowing for precise adjustments 
to the parameters of neurostimulation devices to optimize 
pain relief for individual patients.

While invasive EEG offers unique insights into the 
neurophysiological mechanisms underlying pain perception 
and processing, there is limited research in this domain, 
and recent studies have begun to explore the potential 
of invasive EEG in understanding and treating chronic 
pain conditions. In this context, Pu et al.[69] conducted a 
feasibility study on portable EEG monitoring for older 
adults with dementia and chronic pain, demonstrating the 
potential for invasive EEG to provide valuable insights 
into pain experiences in this population. Similarly, the 
Paired Acute Invasive/Non-invasive Stimulation study by 
Parker et al.[70] investigated the use of invasive EEG in a 
randomized, sham-controlled crossover trial for chronic 
neuropathic pain (NP). In addition, the study Lancaster 
et al.[71] demonstrated the feasibility of decoding acute pain 
using combined EEG and physiological data, highlighting 
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the potential of invasive EEG in improving pain assessment 
and management strategies. Despite the limited number of 
studies in this area, the emerging research underscores the 
importance of further exploring the role of invasive EEG 
in pain management to advance our understanding and 
treatment of chronic pain conditions.

Surgical planning

In surgical planning, BCIs aid in preoperative assessments 
by mapping brain activity to identify critical functional 
areas and potential risks during surgery.[72] This information 
guides surgical strategies, minimizes risks, and enhances 
surgical outcomes by ensuring precise and individualized 
treatment plans.[73,74] In addition to aiding preoperative 
assessment, BCI contributes significantly to surgical 
planning by providing real-time feedback on brain activity 
patterns. Such feedback allows surgeons to adjust their 
methods dynamically, ensuring the preservation of critical 
functional areas and reducing the risk of intraoperative 
complications during surgery.

Sleep disorder monitoring

Brain activity patterns during sleep can be analyzed. By 
monitoring neural signals associated with sleep stages and 
disturbances, BCIs can provide objective data to diagnose 
sleep disorders, assess treatment effectiveness, and inform 
personalized sleep management interventions.[75] In one 
such study, Zhang et al.[76] designed a novel sleep disorder 
treatment system utilizing transcranial microcurrent 
stimulation. Key technical specifications include adjustable 
stimulation frequencies of 0.5  Hz, 1.5  Hz, and 100  Hz 
with two-phase constant current stimulation and continuous 
adjustment of stimulation currents ranging from 0 to 1 mA. 
Another established method for diagnosing obstructive 
sleep apnea is Polysomnography (PSG). Lin et al.[77] have 
devised a PSG system tailored for comprehensive sleep 
monitoring purposes. It is essential to note that BCI-based 
sleep monitoring system implementation is still in its early 
stages, and further research and development are needed to 
validate its effectiveness and reliability.[78]

Human-computer interaction

BCIs revolutionize HCI by enabling direct communication 
between the brain and computer systems. This technology 
allows users to control computers, devices, and interfaces 
solely through brain signals, offering a novel and intuitive 
interaction method for individuals with physical disabilities 
or limitations.[79-81] In this context, Sharma[82] introduced 
a Multi-Label Sequential Convolutional Neural Network 
(EM-LSCNN) designed for identifying the facial landmarks 
of a given face. On implementation and fine-tuning 
according to the user, this model alters the movement of the 
mouse indicator across the screen’s viewport, eliminating 
the necessity for a physical mouse. The proposed model 
exhibited outstanding performance metrics, achieving an 
accuracy of 98.85%, a precision of 99.20%, an f1-score 

of 98.65% and a recall of 98.30. In another HCI-related 
study, Siow et al.[83] designed a prototype enabling users 
to manipulate the cursor by translating real-time synaptic 
commands. An EEG data collection session was conducted, 
during which experimental subjects underwent training to 
master the manipulation of the EMOTIV Insight.

Communication assistance

BCIs provide communication assistance for individuals 
with speech or communication impairments by translating 
brain signals into text or speech output. This technology 
allows nonverbal individuals to communicate effectively, 
fostering independence, social interaction, and improved 
quality of life.[84-86] Zhou et al.[87] proposed a collaborative 
robotic arm control system integrating hybrid asynchronous 
BCI and computer vision technologies. This model merges 
steady-state visual evoked potentials and blink-related 
electrooculography (EOG) signals, enabling users to select 
from 15 commands asynchronously, dictating robot actions 
within a 3D workspace and reaching targets across a 
broad movement spectrum. Concurrently, computer vision 
capabilities are leveraged to identify objects and aid the 
robotic arm in executing more precise tasks, including 
automated target grasping.

In another study, Pooya Chanu et al.[88] explored 
electroencephalogram (EEG)-based control of a prosthetic 
hand. A  SVM has been utilized in conjunction with 24-
fold cross-validation to classify extracted features. To 
optimize SVM hyperparameters, a Bayesian optimizer was 
employed, with a minimum prediction error serving as the 
objective function. This study showcases the feasibility 
of utilizing EEG for controlling a prosthetic hand by 
individuals with motor neuron disabilities.

In the context of communication assistance, invasive BCI 
technology has prominent potential in the development 
of speech interfaces, offering a direct link between neural 
activity and speech production. Research in this area is still 
emerging; several studies have demonstrated promising 
results in utilizing invasive BCI for speech control 
and communication. The study by Leuthardt et al.[89] 
investigated the use of electrocorticography (ECoG) to 
control a BCI in humans, highlighting the feasibility of 
using invasive BCI for speech-related tasks. Similarly, 
Rabbani et al.[90] explored the potential for a speech BCI 
using chronic electrocorticography, further emphasizing 
the potential of invasive BCI in enabling speech 
communication for individuals with speech impairments. 
Invasive BCI research involves more complex procedures, 
such as the surgical implantation of electrodes, which pose 
greater risks and ethical considerations compared to non-
invasive techniques. Moreover, the high costs associated 
with invasive BCI research, including equipment, 
personnel, and medical expenses, are also higher compared 
to non-invasive BCI experiments. These factors contribute 
to the scarcity of research in this area of BCI.
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Psychology or neurology

BCI applications have promising potential in addressing 
and managing a wide range of neurological conditions. 
From detecting Alzheimer’s disease, understanding 
emotional states, and providing deeper insights about 
therapeutic approaches to diagnosing mental health, BCI 
has numerous applications.[91,92]

Alzheimer disease treatment

Machine learning algorithms are used to develop various 
predictive models to decode EEG features, classify 
information, and provide tailored feedback to the user while 
assisting neurological disease. Psychological factors such as 
motivation, attention, and frustration also play an important 
role in human–machine interaction. da Silva-Sauer et al.[93] 
evaluated the usefulness of BCI systems in promoting 
cognitive rehabilitation and neuroplasticity in people with 
dementia. The study involved a total of 10 volunteers with 
mild to moderate dementia. The tasks included in the study 
were a motor imagery task, a visual oddball task, and a 
P300 speller task. In a similar study, Martínez-Cagigal 
et al.[94] created an asynchronous BCI system centered on 
P300, enabling users to command Twitter and Telegram on 
an Android device. In this study, the row-col paradigm is 
employed to stimulate P300 potentials on the user’s scalp, 
which are promptly processed for decoding the user’s 
intentions with motor-disabled individuals.

Depression

BCI provides individuals with real-time feedback on 
brain activities, which might allow them to engage in 
neurofeedback training.[95,96] In one study, Widge et al.[97] 
introduced a technology lifecycle framework, indicating 
that initial trial setbacks result from excessive enthusiasm 
for an emerging technology. They also suggested that 
Deep Brain Stimulation might be approaching a phase of 
significant advancement by merging recent mechanistic 
discoveries with the maturation of BCI technology. In 
another study, Liao et al.[98] developed a machine learning 
algorithm that can accurately detect major depression 
from EEG signals. The authors aimed to use the Kernel 
Eigen-Filter-Bank Common Spatial Patterns (KEFB-
CSP) algorithm to extract discriminative features from 
EEG signals and train a classifier to distinguish between 
depressed and nondepressed individuals.

EEG-based interventions could provide a more personalized 
and effective approach to managing post-stroke 
depression (PSD) in stroke patients.[99] The effectiveness 
of electroencephalography (EEG) in managing PSD and 
improving rehabilitation outcomes is investigated by Yang 
et al.[100] The study also identified significant differences 
in EEG measures between depressed and nondepressed 
patients, highlighting the potential of EEG as a diagnostic 
tool for PSD.

Epilepsy

EEG-based BCIs have advanced significantly in 
recent years, with promising applications in various 
fields such as communication, rehabilitation, and 
entertainment.[101] Sparse representation-based classification 
methods have shown great potential in EEG signal 
processing and can significantly improve the accuracy and 
efficiency of EEG-based tasks, but more research is needed 
to fully exploit their benefits, especially while treating 
epilepsy.[102] The potential of direct electrical stimulation 
(DES) is investigated as an enabling technology for input 
to the cortex in electrocorticographic (ECoG) BCIs by 
Caldwell et al.[103] Authors suggested that DES can provide 
a means of generating artificial sensory input or modulating 
cortical activity to improve BCI performance. Moreover, 
stereotactic EEG plays a vital role in the evaluation and 
management of epilepsy, particularly in cases where other 
diagnostic techniques, such as standard EEG or imaging, 
have yielded inconclusive results.[104,105]

Emotion classification

BCIs are employed to classify and interpret human 
emotional states based on brain activity patterns.[106-111] 
In this context, Teo and Chia[112] worked on EEG data, 
preprocessed, and segmented into epochs, which were 
then used to extract spectral features using the Fast 
Fourier Transform algorithm. The features were fed into a 
deep learning model consisting of a convolutional neural 
network and a long short-term memory network. This study 
suggested that EEG-based excitement detection using deep 
learning models could have practical applications in areas 
such as gaming, marketing, and mental health.

In the context of EEG-based emotion classification, 
the authors proposed a novel approach that combines 
electroencephalography (EEG) and galvanic skin response 
(GSR) to capture and classify emotional states. The authors 
also performed feature selection using a Recursive Feature 
Elimination algorithm to identify the most relevant features 
for emotion recognition.[113] The results of the study 
suggest that the proposed BCI system using EEG and GSR 
data can achieve high accuracy in recognizing emotions 
in people with visual disabilities. The Random Forest 
model achieved the highest accuracy of 84.5% in emotion 
recognition. Another improved EEG pattern decoding is 
presented by Zhang et al.[114] where one-versus-all encoding 
is used for propagation-based clustering. Such EEG pattern 
decoding suggests substantial improvement in brain pattern 
recognition in BCI.

Seizure

BCI technology has great promise for the improvement of 
epilepsy management by enabling early seizure prediction 
and detection, facilitating targeted neuromodulation 
therapies, and guiding personalized treatment 
strategies.[115-117] Devices such as neurostimulation (RNS) 
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can be integrated to deliver targeted electrical stimulation 
to the brain in response to detected seizure activity. 
Furthermore, BCIs can automatically detect and classify 
epileptic seizures in real time based on patterns of brain 
activity. This capability allows for timely intervention, 
such as triggering responsive devices or alerting healthcare 
providers, to mitigate the impact of seizures and ensure 
patient safety.

Stress evaluation

BCI integrated with machine learning models can classify 
emotional states, including stress. By analyzing different 
patterns of brain activity, the BCI system can identify 
when and how an individual experiences stress and to 
what extent.[116,118] Such research conducted by Lin et al.[119] 
where authors designed a cost-efficient, readily producible, 
adaptable, durable, and gel-free electroencephalogram 
(EEG) electrode using a combination of silver nanowires, 
polyvinyl butyral, and a melamine sponge (AgPMS). This 
innovative electrode overcomes issues associated with 
hair interference. Through the silver nanowires’ surface 
metallization, the sponge maintains a high conductivity of 
917 S/m without any increase in weight. In another study, 
Khosrowabadi et al.[120] suggested a BCI system that can 
be applied to categorize the participants’ mental stress 
levels based on the features extracted from their EEG 
signal data. These features include Gaussian mixtures of 
EEG spectrogram, Higuchi’s fractal dimension of EEG, 
and Magnitude Square Coherence Estimation among EEG 
channels. Using the K-NN and SVM algorithms, the 
classification of these EEG features is carried out.

Cognitive impairment

BCI technology can assist patients with severe 
cognitive impairment by providing alternative means of 
communication and interaction. In this way, they can 
express themselves and engage with their environment 
using brain signals to control communication devices.[121-124] 
BCI-based cognitive training tasks, such as memory 
exercises, attention training, and executive function 
challenges, provide targeted cognitive stimulation and 
feedback tailored to individual requirements.

Neuropsychiatric disorder

Neuropsychiatric disorder encompasses a range of mental 
health conditions, including schizophrenia, bipolar disorder, 
and major depressive disorder. BCI-based neurofeedback 
techniques may offer novel therapeutic approaches for 
managing symptoms of these disorders.[125,126] Numerous 
researchers have explored different aspects of BCI 
technology in the field of neuropsychiatric disorders. One 
notable development is the creation of an estimation and 
classification system that considers age and gender factors 
while utilizing structural magnetic resonance imaging 
(sMRI) brain images.[127] This system aims to improve the 
accuracy of diagnosing and classifying neuropsychiatric 

disorders by incorporating demographic variables and 
leveraging advanced neuroimaging techniques. By 
integrating BCI with sMRI data, researchers seek to 
enhance our understanding of these disorders’ neural 
mechanisms and develop more effective diagnostic and 
treatment strategies tailored to individual patients.

Anxiety assessment

Anxiety assessment refers to evaluating and managing 
anxiety disorders, such as social anxiety disorder, 
generalized anxiety disorder, and posttraumatic stress 
disorder (PTSD). By analyzing patterns of brain activity 
associated with stress and arousal, BCI can aid in providing 
the biomarkers of anxiety.[128-131] Such BCI-enabled designs 
can enhance the accuracy of anxiety assessment. Other 
applications include informing treatment decisions and 
facilitating the development of novel interventions, such as 
BCI-based biofeedback training for anxiety regulation.

Attention-deficit/hyperactivity disorder

Attention-deficit/hyperactivity disorder (ADHD) is a 
neurodevelopmental disorder marked by challenges in 
sustaining attention, managing impulses, and regulating 
activity levels.[132,133] BCIs have the capability to monitor 
attentional processes in real time by observing patterns 
of brain activity associated with attentional engagement 
and disengagement. BCIs can adjust task parameters or 
provide motivational cues based on real-time assessments 
of attentional state, facilitating task completion and goal 
attainment.[134,135] In one study, Lai et al.[136] combined BCI 
technology with Tangible User Interface (TUI) techniques 
and introduced the prototype of a TUI jigsaw puzzle, named 
E-Jigsaw, aimed at assisting children with attention deficit 
disorder and Attention Deficit Hyperactivity Disorder. 
E-Jigsaw incorporates an interactive design that aligns 
with neural feedback mechanisms. Its TUI functionality 
is designed to enhance hand-eye coordination, precise 
manipulation skills, sensory integration ability, and attention 
levels through engaging user interactions. Furthermore, for 
real-time attention monitoring, Prabhu et al.[137] introduced 
a novel smart wearable headband prototype that combines 
EOG and EEG sensors. This advanced device facilitates the 
continuous tracking of brain activity and eye movements in 
real-time during various activities. This capability enables 
the detection of subtle shifts in alertness, attention, and 
perception.

Pediatric applications

In pediatric health care, there are numerous innovative 
solutions for diagnosis, treatment, and rehabilitation. 
Cognitive function can be measured through such 
technology in pediatric patients, assisting clinicians in 
assessing attention, memory, and executive function skills. 
This application can be further segmented into pediatric 
neurorehabilitation and neurodevelopmental monitoring.
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Pediatric neurorehabilitation

Pediatric neurology research is based on investigating 
brain-behavior relationships, neural mechanisms of 
development, and biomarkers of neurological disorders in 
children. By studying brain activity patterns, BCIs enhance 
our understanding of pediatric neurological conditions, 
facilitating early diagnosis, intervention, and personalized 
treatment approaches.[138,139] Hasan et al.[126] conducted a 
study utilizing a potential diagnostic biomarker for NP. 
The anticipated insights from this research hold significant 
clinical relevance in the development of neurofeedback-
based neurorehabilitation and connectivity-based BCIs for 
patients with SCI.

Neurodevelopmental monitoring

Neurodevelopmental monitoring entails methodically 
observing and evaluating a child’s neurological and cognitive 
development over time. This process allows healthcare 
professionals to track developmental milestones, identify 
potential delays or disorders, and provide early intervention 
and support when necessary.[140,141] By monitoring 
neurological development from infancy through childhood, 
clinicians can detect and address neurodevelopmental 
concerns early, promoting optimal outcomes for children’s 
cognitive, social, and emotional well-being.[142,143]

Personalized medicine

Personalized medicine through this technology involves 
tailoring medical treatments and interventions to 
individual patients based on their unique neural activity 
patterns, cognitive abilities, and clinical characteristics. 
By leveraging BCI technology, healthcare providers can 
obtain real-time insights into patients’ brain function and 
neurological status, allowing for more precise diagnoses, 
treatment plans, and therapeutic interventions.[144] This 
personalized approach enhances the effectiveness of medical 
care by accounting for variations in patients’ physiological 
responses, preferences, and treatment outcomes, ultimately 
enhancing patient results and overall well-being.[145]

Neurofeedback therapy

Neurofeedback therapy has been used to address a variety 
of neurological and psychological conditions, including 
attention deficit ADHD, anxiety, insomnia, traumatic brain 
injury, depression, epilepsy, and PTSD.[146,147] It is also used 
for peak performance training in athletes, musicians, and 
other professionals seeking to enhance cognitive function 
and concentration.[148,149]

Tailoring therapy dosages could potentially optimize 
improvements in motor functions. Bigoni et al.[150] 
developed a therapeutic approach involving two consecutive 
interventions, continuing until the patient demonstrates 
no additional motor enhancement, with a minimum of 11 
sessions each. The key outcome in this study is defined as 
a 4-point enhancement in the Fugl-Meyer assessment of the 

upper extremity, which was achieved in the initial patient, 
showing an elevation from 6 to 11 points between T0 and 
T2. This progress was accompanied by alterations in the 
structure and function of the motor network.

Individual treatment planning

Individual treatment planning involves customizing medical 
interventions and therapies to align with the specific 
needs, characteristics, and preferences of each patient. 
This approach recognizes that individuals may respond 
differently to treatments due to factors such as genetics, 
lifestyle, coexisting conditions, and personal preferences. 
By customizing treatment plans for each patient, healthcare 
providers can maximize the effectiveness of interventions, 
minimize adverse effects, and improve patient 
outcomes.[151-153] ciBCI technology can have a significant 
impact on individual treatment planning by providing 
insights into patients’ neural activity, cognitive function, 
and real-time responses to interventions.[154]

Discussion
BCI technology integration shows considerable potential 
across a wide array of fields. In the realm of medical 
applications, BCI technology plays a crucial role in 
enhancing accessibility and improving outcomes for 
individuals, especially those with disabilities. By 
harnessing BCI-controlled assistive devices such as 
prosthetics, wheelchairs, and communication aids, patients 
are empowered to regain autonomy and enhance their 
quality of life, conquering the obstacles to mobility and 
communication.

Furthermore, BCI-driven neurorehabilitation programs offer 
tailored therapies for patients recovering from neurological 
traumas or conditions. These programs facilitate motor 
recovery, cognitive rehabilitation, and functional 
independence through personalized interventions. This 
review work significantly contributes to advancing the 
understanding and application of BCI technology in 
medical contexts. By synthesizing and consolidating a 
diverse range of related research, our review paper provides 
a comprehensive overview of the field’s current state.

While such technology has promising positive impacts 
in medical domains, there are still several limitations to 
consider. The reliability of BCI systems in real-world 
settings requires further validation. Variability in EEG 
signals due to factors such as electrode placement and 
signal artifacts might impact the accuracy of the results, 
which should be considered carefully. The papers discussed 
in section communication and assistive device section[49-52] 
have limitations in discussing and identifying long-term 
assessment for sustained efficacy and usability of such BCI 
devices. In studies focusing on Alzheimer’s disease and 
depression,[95,96] ethical considerations play a significant 
role, particularly while obtaining informed consent from 
participants. Given the sensitive nature of such neurological 
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and psychiatric conditions, ensuring that participants fully 
understand the nature of the research, its potential risks and 
benefits, and their rights as research subjects is paramount. 
In addition, researchers must adhere to ethical guidelines 
and regulations governing the conduct of research 
involving human participants, including protocols for data 
confidentiality, privacy protection, and respectful treatment 
of participants. By prioritizing ethical considerations, 
researchers can uphold the integrity and validity of their 
findings while safeguarding the welfare and autonomy of 
research participants.

Moreover, another potential limitation in this BCI 
medical application indicated that technology such as 
neurodevelopment monitoring[142,143] and neurofeedback 
therapy[138,139] could pose barriers to widespread adoption 
due to the expenses. Addressing the financial barrier to 
adopting BCI technology in the medical field requires 
collaborative efforts. It includes necessary input from 
researchers, healthcare providers, policymakers, and 
industry stakeholders to develop cost-effective solutions, 
advocate for insurance coverage of BCI services, and 
increase funding for BCI research and development. By 
overcoming these financial challenges, the benefits of BCI 
technology can be more equitably accessible to individuals 
in need of innovative medical interventions and treatments.

Moreover, although extensive research has been conducted 
on both noninvasive and invasive BCI systems, noninvasive 
techniques, particularly EEG-based approaches, are 

being more widely studied due to their lower risk and 
ease of implementation. However, despite notable 
advancements, various gaps remain in the development 
of effective, accessible, and adaptable BCI solutions. 
Key areas, including the balance between invasiveness 
and control, scalability of subject-independent BCIs, and 
personalization for specific user needs, still require further 
exploration to improve real-world applicability and user 
experience. Considering the technological limitations, 
the majority of research focuses on noninvasive BCIs 
(e.g.,  Murphy et al.,[7] Joadder et al.,[9] Toma[10]), which 
utilize EEG signals for BCIs. While this method is less 
risky than invasive methods, it may lack the precision and 
control that invasive approaches offer.

Invasive BCIs (e.g.,  Laiwalla et al.,[20] Flesher et al.[25]) 
have shown potential in providing fine control and even 
sensory feedback for prosthetics. However, there are 
fewer studies in this area due to ethical concerns and 
technical challenges. Gap: More research could be directed 
toward balancing the precision of invasive BCIs with the 
safety and accessibility of noninvasive ones. In addition, 
research works by Ang et al.[30] and Ang and Guan[31] 
focus on real-time feedback and rehabilitation using EEG 
signals to improve motor recovery, but there is limited 
focus on personalized BCI adaptations for rehabilitation. 
Gap: Research could delve into creating adaptable BCIs 
for specific user needs in rehabilitation and prosthetics, 
improving personalization and feedback mechanisms. 
Tables 1-3 provides thorough comparative analysis. Table 1 

Table 1: Comparison between invasive and noninvasive methods
Reference paper Year Methods Focus area
Murphy et al.[7] 2017 Noninvasive Based on advances EEG-based interfaces
Joadder et al.[9] 2019 Noninvasive Focus is on subject-independent BCI system
Toma[10] 2023 Noninvasive Procedures undertaken in a passive BCI
Kwon et al.[14] 2020 Noninvasive Use of deep learning for subject-independent BCI
Manyakov et al.[15] 2011 Noninvasive P300 BCI classification
Cantillo-Negrete et al.[16] 2023 Noninvasive BCI-controlled functional electrical stimulation
Guger et al.[17] 1999 Noninvasive EEG-based prosthetic control
Katyal et al.[19] 2014 Noninvasive Collaborative BCI for prosthetic control
Laiwalla et al.[20] 2019 Invasive Discusses implantable microstimulators
Chapin et al.[21] 1999 Invasive Real-time control using recorded neurons
Oppus et al.[22] 2016 Noninvasive BCI for 3D printed prosthetic hand
Mishchenko et al.[23] 2018 Noninvasive EEG-based interface
Aly et al.[24] 2018 Noninvasive Hybrid BCI for upper limb prostheses
Flesher et al.[25] 2021 Invasive BCI that evokes tactile sensations
Fifer et al.[26] 2013 Invasive Development of advance prosthetic device using iEEG for high-resolution neural signals
Beyrouthy et al.[27] 2016 Noninvasive Controlling smart Prosthetic arm through brain activity using EEG
Ang et al.[30] 2015 Noninvasive Controlling robotic rehabilitation device through brain activity measured via EEG
Ang and Guan[31] 2015 Noninvasive To enhance motor recovery by providing real-time feedback and to encourage 

therapeutic environment
Savić et al.[33] 2023 Noninvasive Electrotactile BCI utilizing somatosensory to create feedback loop that improve sensory 

function and motor control
Séguin et al.[36] 2023 Noninvasive P300-based BCI focuses on enabling communication and control devices for individuals 

with limited mobility
BCI – Brain-computer interface; EEG – Electroencephalogram; 3D – Three-dimensional
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presents a comparison of invasive versus noninvasive 
BCI, highlighting key distinctions. Table  2 focuses on 
studies that incorporate machine learning or deep learning 
models, allowing for a detailed examination of algorithmic 
approaches. Finally, Table  3 summarizes the practical 
applications of the reviewed studies, offering an overview 
of how BCI technologies have been implemented across 
various contexts.

Through this systematic segmentation, discussion, and 
referencing of numerous relevant studies, our review 
explicates key findings, identifies emerging trends, and 
highlights gaps in knowledge. By shedding light on the 

multifaceted applications of BCI technology in health care, 
this work serves as a valuable resource for researchers, 
clinicians, and stakeholders seeking to harness the full 
potential of BCI technology in improving patient care and 
outcomes. We have another ongoing work which focuses 
on the multimodal emotion recognition in BCI settings 
that exemplifies this direction, merging EEG signals with 
synchronized facial or physiological data to improve 
emotion detection accuracy. Such models hold promise 
for personalized interventions, where emotion-aware 
systems could adapt in real time to a patient’s emotional 
state, thereby enhancing clinical engagement and treatment 
efficacy.

Table 2: Comparison between machine learning or deep learning models
References paper Year ML/DL techniques Focus area
Manyakov 
et al.[15]

2011 BLDA, LDA, SWLDA, FE, SVM, neural 
network and nSVM

They used classification algorithm for P300-based BCI for 
communication aid

Meng et al.[36] 2016 Two sequential low-dimensional control 
strategies (SVM)

They used BCI approach based on machine learning to control 
robotic arm with precision

Deng et al.[40] 2023 Quadcopter cluster control based on SSVEP 
(canonical correlation analysis)

VR-based BCI, interactive, designed for controlling 
unmanned aerial vehicle swarm

Karas et al.[44] 2023 Neural network (supervised clustering algorithm) Develop a unique double-thresholding based pattern 
recognition approach to detect eye artifacts in EEG signals

Borgheai et al.[56] 2024 MLR Prediction of BCI performance by applying machine learning 
models

Li et al.[61] 2024 BCI-based motor image BCI training program incorporating both visual and motor 
feedback for stroke rehabilitation

Widge et al.[92] 2018 Deep reinforcement learning Closed loop DBS that uses real-time feedback from brain 
activity for treatment-resistant depression

Garima et al.[104] 2023 Flexible analytic wavelet transform for dimension 
and random forest for emotion classification

Dimensionality reduction and visualization of high-
dimensional EEG data for emotion classification

Teo and Chia[107] 2018 DNN using 10-fold cross-validation Leveraging deep learning approach for EEG-based excitement 
detection in VR

Pinilla et al.[108] 2023 LME models and RFECV Real-time affect detection in VR using 3D model
Aims to approve the accuracy of emotion recognition

Zhang et al.[109] 2021 Clustering-based multitask feature learning 
algorithm (propagation-based clustering)

The study area focuses on multitasking learning to enhance 
EEG decoding for various cognitive and emotional plan

Kwon et al.[9] 2019 CNNs Use of deep learning for subject-independent BCI
Silversmith 
et al.[112]

2021 EEG, fMRI, signal processing, and machine 
learning algorithm

Developing the system that can adjust to the changes in neural 
signals allowing for reliable and user-friendly BCI control

Khosrowabadi 
et al.[115]

2011 K-NN and SVM Uses various methods (such as Higuchi’s fractal dimension) 
for analyzing EEG signals to detect and classify level of 
mental stress

Akrami et al.[120] 2024 KSVM, RF, and neural network Employ machine learning to analyze the imaging data and 
predict outcomes that help in early identification of traumatic 
epilepsy

Arsalan and 
Majid[126]

2022 RF classifier Develop a headband to monitor EEG signals that focuses on 
differentiating various levels of anxiety detection

Demarest et al.[136] 2024 Theta-controlled BCI, pain neuromatrix BCI utilizes theta brainwave pattern to explore chronic pain 
treatment management

BCI – Brain-computer interface; KSVM – Kernel Support Vector Machine; K-NN – K-nearest neighbor; SVM – Support vector machine; 
EEG – Electroencephalogram; CNNs – Convolutional neural networks; LME – Linear mixed-effects; RFECV – Recursive feature 
elimination with cross-validation; MLR – Multivariate linear regression; VR – Virtual reality; fMRI – Functional magnetic resonance 
imaging; SSVEP – Steady-state visual evoked potentials; 3D – Three-dimensional; DBS – Deep Brain Stimulation; DNN – Deep neural 
network; LDA – Linear discriminant analysis; RF – Random forest; BLDA – Bilevel discriminative learning algorithm; SWLDA – 
Stepwise linear discriminant analysis; FE – Feature engineering; ML – Machine Learning/DL – Deep Learning; SVM – Support vector 
machine
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Conclusions

BCI technology has introduced new possibilities in medical 
research, diagnosis, and treatment by enabling direct 
communication between the brain and external devices. 
From predictive analytics to neurofeedback therapy, 
BCI is reshaping the landscape of health care, offering 
unprecedented insights and capabilities. By enabling control 
over assistive devices such as prosthetics, wheelchairs, and 
communication aids, BCI technology empowers patients to 
regain autonomy and quality of life, addressing barriers to 
mobility and communication. This survey work represents 
a pivotal milestone in the field of BCI technology, 
particularly in its applications within the medical domain 
by synthesizing a wide array of research findings. This 
systematic categorizing of the diverse applications of BCI 
technology will serve as an indispensable guide for shaping 
future research directions. And researchers in this field 
might gain a depth understanding of the current landscape 
of BCI technology in medical applications. By highlighting 
key findings, identifying trends, and pinpointing areas for 
further investigation, this paper offers invaluable insights 
that can inform the development of innovative BCI-based 
solutions for healthcare challenges.
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