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Abstract
Background: Optical coherence tomography  (OCT) is a pivotal imaging technique for the early 
detection and management of critical retinal diseases, notably diabetic macular edema and age‑related 
macular degeneration. These conditions are significant global health concerns, affecting millions 
and leading to vision loss if not diagnosed promptly. Current methods for OCT image classification 
encounter specific challenges, such as the inherent complexity of retinal structures and considerable 
variability across different OCT datasets. Methods: This paper introduces a novel hybrid model 
that integrates the strengths of convolutional neural networks  (CNNs) and vision transformer  (ViT) 
to overcome these obstacles. The synergy between CNNs, which excel at extracting detailed 
localized features, and ViT, adept at recognizing long‑range patterns, enables a more effective 
and comprehensive analysis of OCT images. Results: While our model achieves an accuracy of 
99.80% on the OCT2017 dataset, its standout feature is its parameter efficiency–requiring only 6.9 
million parameters, significantly fewer than larger, more complex models such as Xception and 
OpticNet‑71. Conclusion: This efficiency underscores the model’s suitability for clinical settings, 
where computational resources may be limited but high accuracy and rapid diagnosis are imperative.

Code Availability: The code for this study is available at https://github.com/Amir1831/ViT4OCT

Keywords: Computer vision, convolutional neural network, deep learning, multi‑headed 
self‑attention, optical coherence tomography, vision transformers

From Image to Sequence: Exploring Vision Transformers for Optical 
Coherence Tomography Classification

Original Article

Amirali Arbab1, 
Aref Habibi1, 
Hossein Rabbani2, 
Mahnoosh 
Tajmirriahi2

1Department of Electrical and 
Computer Engineering, Isfahan 
University of Technology, 
Isfahan, Iran, 2Medical Image 
and Signal Processing Research 
Center, School of Advanced 
Technologies in Medicine, 
Isfahan University of Medical 
Sciences, Isfahan, Iran

Amirali Arbab and Aref Habibi 
contributed equally to this work.

How to cite this article: Arbab A, Habibi A, 
Rabbani H, Tajmirriahi M. From image to sequence: 
Exploring vision transformers for optical coherence 
tomography classification. J  Med Signals Sens 
2025;15:18.

Introduction
Imaging plays a critical role in modern 
medicine, providing invaluable insights 
for diagnosis, treatment planning, and 
clinical trial design.[1] In the context 
of retinal disorders, advanced imaging 
techniques, such as optical coherence 
tomography  (OCT), enable the detailed 
visualization of retinal layers, facilitating 
the early detection and management of 
conditions that can lead to vision loss.[2‑4]

Diabetic macular edema  (DME) is 
characterized by the accumulation of fluid 
in the retinal layers, leading to swelling 
and thickening of the retina. This condition 
occurs as a result of leaky blood vessels 
in the retina, a common complication of 
diabetes that can cause vision impairment 
if untreated.[5,6] Age‑related macular 
degeneration  (AMD), on the other hand, 
is a progressive condition that leads to 

the degeneration of the macula, often 
resulting in the thinning of retinal layers. 
The dry form of AMD is marked by the 
accumulation of drusen, yellow deposits 
beneath the retina, whereas the wet form 
involves abnormal blood vessel growth, 
which can lead to bleeding and scarring.[7,8] 
OCT scans enable the detailed visualization 
of these structural changes, making it a 
critical tool in diagnosing and managing 
these retinal disorders.

Convolutional neural networks  (CNNs) 
have shown strong capabilities in analyzing 
OCT images, particularly in extracting 
localized features.[9,10] However, CNNs face 
limitations in capturing global relationships 
and long‑range dependencies, which 
are crucial in complex medical images. 
Recently, transformers have emerged 
as powerful alternatives that excel at 
modeling these global relationships but 
at a high computational cost.[11,12] Hybrid 
models, which combine CNNs and 
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transformers, have been proposed to leverage the strengths 
of both architectures. For instance, architectures such as 
BEFUnet[10] and TransUNet[13] have demonstrated improved 
performance by fusing CNN’s local feature extraction with 
transformers’ long‑range modeling capabilities.[14]

This paper proposes a novel hybrid model that addresses 
the limitations of both individual architectures. We leverage 
the strengths of CNNs and transformers by combining them 
into a single framework for improved OCT performance. 
Our model employs a three‑dimensional (3D) convolutional 
preprocessing step to efficiently extract localized features 
from medical image sequences. These features are fed into 
a transformer encoder, enabling the model to capture the 
crucial long‑range dependencies and global context within 
the images.

We begin by reviewing existing methods and datasets in the 
field of OCT imaging in related work. Then, the method 
section details our proposed methodology, including the 
architecture and training process. In the experiment section, 
we present the dataset employed for evaluation, along with 
the metrics used to assess performance. To gain deeper 
insights into the model’s behavior, we conduct ablation 
studies and interpret the results. Finally, the discussion and 
conclusion summarize our findings.

Related work

Traditional methods in retinal disease diagnosis

Retinal diseases pose a significant threat to vision and 
can lead to blindness globally. Analyzing and accurately 
classifying these diseases through retinal image analysis 
plays a critical role in early detection and timely 
intervention. Traditionally, this field relied on techniques 
centered on image processing and feature extraction.[15] The 
initial step involves image quality enhancement, followed 
by feature extraction. This process focuses on identifying 
and extracting crucial and informative features from 
the image, such as edges, textures, colors, and shapes. 
Principal component analysis,[16] Gabor filters, and 
wavelet transforms were commonly employed for 
feature extraction. In addition, feature descriptors such 

as histogram of oriented gradients  (HOG),[17] local 
binary patterns  (LBP),[18] and scale‑invariant feature 
transform  (SIFT)[19] were utilized. HOG[17] excelled at 
extracting edge and texture‑related features, whereas 
LBP[18] was adept at texture analysis. SIFT,[19] on the other 
hand, is used to pinpoint and describe key and distinctive 
locations within the image. In Table 1,[20] we summarized 
some relevant traditional methods..

Deep learning revolution

In recent years, the landscape of retinal disease diagnosis 
has undergone a paradigm shift, witnessing a surge 
in the utilization of powerful deep learning  (DL) 
architectures.[23,26,27] This trend is driven by the remarkable 
potential of these techniques to achieve exceptional 
accuracy in distinguishing various retinal pathologies. 
DL revolutionizes medical image analysis using neural 
networks to automatically extract essential features for 
classification.[28,29] This eliminates the previously prevalent 
need for manual feature engineering, a laborious and 
time‑consuming process.

One such example is the pioneering work by Awais 
et al.,[30] who developed a novel deep classification system. 
Their approach leveraged a hybrid architecture, combining 
the feature extraction capabilities of VGG16 with the 
classification strengths of K‑nearest neighbors and random 
forest algorithms. This resulted in a robust system capable 
of effectively differentiating between normal retinas and 
those afflicted with DME. Similarly, Lee et  al.[26] adopted 
a standalone VGG16 architecture for binary classification 
purposes, achieving promising results in detecting 
age‑related macular edema. CNNs have emerged as 
leaders in this field, demonstrating remarkable successes 
in classifying retinal pathologies using OCT images. 
Compared to traditional multi‑block methods, CNNs offer 
a streamlined and efficient approach.  In Table 2,[20] we 
summarized some DL methods.

The power of transfer learning

Recent studies have explored the potential of pretrained 
CNNs for OCT image classification, particularly in 

Table 1: Some traditional machine learning‑based methods in optical coherence tomography image classification
Authors, year Model Dataset Performance measures
Albarrak et al., 2013[21] Volume decomposition, LBP, Bayesian 

classifier
Private (140 3D 
OCT)

Accuracy: 91.4% 
Sensitivity: 92.4% 
Specificity: 90.5%

Srinivasan et al., 2014[22] Multi‑scale histogram, SVM Duke[22] Accuracy: 95.56%
Lemaître et al., 2016[23] Five‑step OCT classification: Preprocessing, 

LBP/LBP‑Top feature extraction, classification
SERI private[23] Sensitivity: 81.2% 

Specificity: 93.7%
Sun et al., 2017[24] Sparse coding, dictionary learning, multiclass 

linear support vector machine classifier
Duke[22] + private Accuracy: 97.78%

Venhuizen et al., 2017[25] Bag of words algorithm with frequency vector 
classifier for automatic AMD severity grading

Eugenda Sensitivity: 98.2% 
Specificity: 91.2%

OCT – Optical coherence tomography; LBP – Local binary patterns; SVM – Support vector machine; AMD – Age‑related macular 
degeneration; 3D – Three dimensional
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scenarios where access to large datasets might be limited. 
Karri et  al.[44] successfully employed the GoogleLeNet 
model on a publicly available OCT dataset curated by 
Srinivasan et  al.[22] This approach underscores the ability 
of transfer learning to mitigate the need for extensive 
training data. Similarly, Li et  al.[45] adopted a transfer 
learning strategy using the VGG16 model, further 
demonstrating the versatility and adaptability of pretrained 
models. Beyond classification tasks, researchers have 
explored the application of these pretrained models in 
other areas of retinal disease diagnosis. Gómez‑Valverde 
et  al.[46] conducted a comparative analysis of various 
pretrained models including VGG19, GoogLeNet, 
ResNet50, and DeNet for glaucoma diagnosis using color 
fundus images. Their work highlights the adaptability 
and strong performance of these pretrained architectures. 
Based on this study, Cheng et  al.[47] proposed a deep 
hashing algorithm based on ResNet50, demonstrating 
the potential of these models in image retrieval and 
classification tasks, further expanding the applications of 
transfer learning in retinal disease diagnosis. In Table  3, 
we summarized some transfer learning methods.

Methods
Our model builds upon the original architecture of vision 
transformer  (ViT)[50] with a key modification. We propose 
a preprocessing step that leverages the strengths of CNNs 
for effective feature extraction, ultimately improving OCT 
image classification performance. The block diagram of the 
proposed method is depicted in Figure 1.

The proposed method consists of following steps

Input image

The input to our model consists of a batch of images 
denoted as x RB×C×H×W∈  where B represents the batch 
number, C is the number of channels, H is the image 
height, and W is the image width.

Break down into patches

To handle two‑dimensional  (2D) images with transformer, 
that typically operates on 1D embedding as input,[50] N 
nonoverlapping patches are extracted with size P × P, 
ensuring they span the entire image x ∈ RC×H×W. This converts 
a single image , to sequence of patches x' ∈ RC×N×P×P with N 
number of frames in a sequence, where N = HW

P2
.

Table 2: Some deep learning methods in optical coherence tomography image classification
Authors, year Model Dataset Performance measures
Lee et al., 2017[26] Modified 

VGG16 CNN
Private dataset (48,312 normal and 52,690 
AMD OCT scans)

Accuracy: 87.63% (OCT level), 
accuracy: 88.98% (volume level), 
accuracy: 93.45% (patient level)

Serener and Serte, 
2019[31]

AlexNet and 
ResNet18 for dry 
and wet AMD

OCT2017[32] ResNet18‑Dry AMD
Accuracy: 99.8%, sensitivity: 
98.0%, specificity: 100.0%

ResNet18‑Wet AMD
Accuracy: 98.8%, sensitivity: 
95.6%, specificity: 99.9%

Fang et al., 2019[33] IFCNN 2nd version of the OCT2017[32] + MURA[34] Accuracy: 87.3%
Huang et al., 2019[34] LGCNN 2nd version of the OCT2017[32] + HUCM[34] Accuracy: 88.4%
Rasti et al., 2018[35] MCME NEH[35] Precision: 99.36%

Recall: 99.36%
F1‑score: 99.34%

Das et al., 2019[36] MDFF 2nd version of the OCT2017[32] Accuracy: 99.6%
Sensitivity: 99.6%
Specificity: 99.87%

Thomas et al., 2021[37] Multi‑scale CNN 
structure[37]

OCT2017[32] Accuracy: 99.73%

Fang et al., 2019[38] LACNN OCT2017[32] Accuracy: 90.1%
Das et al., 2020[39] BACNN DUIA[40] + NEH[35] Accuracy: 90.1% (NEH)

Accuracy: 97.1% (DUIA)
Hassan et al., 2021[41] RAG‑FW Duke1[40], Duke2[42], Duke3[22], BIOMISA[43], 

OCT2017[32]
Accuracy: 98.6%
Sensitivity: 98.27%
Specificity: 99.6%

OCT – Optical coherence tomography; AMD – Age‑related macular degeneration; CNN – Convolutional neural network; 
IFCNN – Iterative fusion CNN; BACNN – B‑scan attentive CNN; LACNN – Lesion‑aware CNN; MDFF – Multi‑scale deep feature 
fusion; MCME – Multi‑scale convolutional mixture of expert; LGCNN – Layer guided CNN; RAG‑FW – Deep retinal analysis and grading 
framework; NEH – Noor Eye Hospital
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In OCT imaging, each column of the image represents an 
A‑scan which captures the signal intensity as a function of 
depth, displayed through pixel brightness. By arranging the 
patches in column‑wise order (sequencing patches from top 
to bottom within each column), we preserve the inherent 
time sequence of the A‑scans. This ordering maintains 
the continuity of the depth information and leverages the 
sequential nature of the A‑scans, leading to improved 
performance in our hybrid model. Therefore, we modify 
the patch sequence so that patches within the same column 
are in sequential order, effectively capturing the temporal 
dynamics of the OCT data as shown in Figure 2.

Feature extraction

After converting the single OCT image into a sequence 
of patches, we employ three stacked Conv3D layers with 
ReLu activation[52] to extract spatio‑temporal features of the 
sequence. While Conv3D layers are commonly used for 
processing 3D data, to the best of our knowledge, this is 
the first work to integrate them with a ViTs for 2D image 
classification tasks like OCT analysis. This approach allows 
us to not only capture spatial relationships within the OCT 
image but also extract temporal information across the patch 
sequence. An experiment was conducted where the patches 
were randomly shuffled, but this did not yield satisfactory 

accuracy compared to the fixed sequential arrangements. 
We also tested both horizontal and vertical sequential 
arrangements. Among these, the vertical arrangement 
achieved the highest accuracy, as it preserves the temporal 
and spatial coherence of related A‑scans. This result 
highlights the importance of patch ordering in maintaining 
meaningful relationships between patches to improve model 
performance. While random ordering proved suboptimal, 
the sequential vertical arrangement demonstrated significant 
advantages, achieving unprecedented accuracy on this 
dataset. Further exploration of other ordering methods may 
still be an interesting direction for future studies.

To leverage spatial relationships in 2D OCT images, we 
divided each image into sequential patches, treating them 
as a pseudo‑temporal input. This approach conceptually 
aligns with the application of 3D convolutions, allowing 
us to capture cross‑patch dependencies more effectively. 
Our implementation utilized Conv3D layers to process 
these sequences, which offered a unique advantage over 
traditional Conv2D architectures in our experiments.

To further improve efficiency and reduce the computational 
burden, we incorporate MaxPool3D[53] between the Conv3D 
layers, with a kernel size of (2,1,1) and a stride of (2,1,1). This 
configuration is specifically chosen to reduce the sequence 

Table 3: Some transfer learning methods in optical coherence tomography image classification[8]

Authors, year Model Dataset Performance measures
Kermany et al., 
2018[32]

Transfer learning with 
inceptionV3

OCT2017[32] Accuracy: 96.6%
Sensitivity: 97.8%
Specificity: 97.4%

Li et al., 2019[45] Transfer learning with 
VGG16

OCT2017[32] Accuracy: 98.6%
Sensitivity: 97.8%
Specificity: 99.4%

Hwang et al., 
2019[48]

Transfer learning (VGG16, 
inceptionV3, ResNet50)

Private dataset + 
OCT2017[32]

Accuracy: 91.20%–96.93%
Sensitivity: 95.87%–97.65%

Kaymak and 
Serener, 2018[49]

AlexNet for retinal OCT 
pathologies

OCT2017[32] Accuracy: 97.1%
Sensitivity: 99.6%
Specificity: 98.4%

OCT – Optical coherence tomography

Figure 1: The block diagram of the proposed method. In the first step, our model converts a single image to a sequence of smaller images. Then, pass 
them through a series of Conv3D and Maxpool3D to extract features and then use the attention mechanism[51] to extract information across the entire 
image and finally use a linear classification to map our data to corresponding labels
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length along the temporal dimension, without altering the 
spatial dimensions of the patches. By applying the pooling 
operation only in the temporal dimension, we ensure that the 
spatial resolution of each patch is preserved, allowing the 
model to retain critical retinal information while focusing on 
reducing the number of tokens passed to the transformer layers.

Hence, after applying these layers, we face a sequence 
x' ∈ RC'×N'×P×P where C' represents the number of output 
feature channels extracted by the final convolutional layer 
and N' = N

4
 reflects the reduced sequence length due to 

the MaxPool operation.

Flattening

Subsequently, each patch in the sequence is flattened into 
a 1D vector of size C' × P × P. This flattening operation 
transforms the sequence x  into a 2D tensor of size 
N' × (C'P2 ). Therefore, for a single patch in the sequence, 
we have x Rp

C'P∈
2 , where p= 1,...,N'  is patch index.

Linear embedding

In this stage, each patch is linearly mapped into an 
embedding vector:

z = Ex +ep p p
pos0� � � � � (1)

Where z Rp
D0� � �  is related to input vector xp by adding 

e Rp
pos D� � �  to the transformation of original input xp, with 

matrix E R .D C P× 2

� �  Where ep
pos� �  is a learnable position 

embedding to retain positional information.

To use transformers for classification problems, as the original 
BERT[54] do, a learnable classification token is added in the 
first position of the embedding sequence. BERT, which stands 
for Bidirectional Encoder Representations from Transformers, 
is an innovative model that employs a transformer 
architecture to process language. It captures complex semantic 
information through its multi‑headed attention mechanism and 
bidirectional training approach. The final embedding vector 
can be considered the sequence of embedded text words that 
are processed by transformers in NLP.

Transformer layers

The core of the proposed model is a transformer encoder 
that processes the sequence of patches. Each transformer 
block follows this sequence:

y = MHSA ln z + zl l l� �� � � (2)

z = MLP ln y + yl+1 l l� �� � � (3)

●	 Layer Normalization. The input patch sequence  (x) is 
normalized using layer normalization[55] to reduce the 
training time by applying normalization on the inputs to 
the neurons in a layer

●	 Multi‑headed Self‑attention  (MHSA). Is a mechanism 
that allows the model to focus on different parts of the 
input simultaneously, improving its ability to capture 

global relationships. This concept, first introduced in 
the transformer architecture,[51] is central to our model’s 
ability to classify complex OCT images. Equation 4 
represents the attention mechanism that is used in the 
MHSA blocks.

Attention Q,K,V = Softmax QK
d

V
T

k

� �
�

�
��

�

�
��

� (4)

In our model, the self‑attention mechanism is employed to 
dynamically focus on different segments of the input OCT 
images. By generating queries Q, keys K, and values V 
through distinct linear projections, each attention head can 
capture unique information from the input embeddings.[51] 
This capability allows the model to adaptively enhance 
or suppress features depending on their relevance to the 
specific task of classifying OCT images.

The self‑attention mechanism enhances the model’s 
interpretability and efficiency in handling complex 
spatial relationships inherent in medical imaging data, 
as demonstrated in works such as reference,[50] where 
transformers were successfully applied to image data. By 
focusing on the most informative parts of an image, the 
model can efficiently process large inputs while maintaining 
high accuracy. This aspect is particularly crucial for medical 
diagnosis, where precision and detail are paramount.[13]

Moreover, the flexibility of this approach enables our 
model to better generalize across different OCT devices and 
conditions by learning to prioritize image features that are 
most diagnostic, regardless of variations in image quality or 
presentation. This results in robust performance, as evidenced 
by improved classification accuracy in our experimental 
results, making it highly effective for clinical applications 
where diverse and unpredictable image data are common.
●	 Multi‑Layer Perceptron. Sequence is further processed 

by a two‑layer MLP with GELU activation[56] and 
dropout[57] for regularization.

Linear classifier

Finally, a linear classifier is used to classify zcls
L  token, 

which is used to predict the final image class:

y = MLP ln zcls
L� �� � � (5)

However, the quadratic complexity of the attention 
mechanism[58] makes processing all image tokens 

Table 4: Our model hyperparameters overview
Parameter Value
Image size 128×128
Patch size 8×8
Batch size 64
Number of patches 256
Number of heads 4
Number of encoder 11
Embed dim 256
Transformer feed‑forward hidden layer size 512
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computationally expensive. As we mentioned, the patch 
sequence is passed through a series of Conv3d[52] and 
Maxpool3d[53] operations to extract spatiotemporal features 
of the sequence and then pass to the transformers layers. 
This significantly reduces the number of tokens processed 
by the transformer layers, leading to faster training times 
and a more efficient model.[59]

Table  4 shows the hyperparameters used in our model, 
which were carefully chosen to balance accuracy and 
efficiency during training.

Experiments

Dataset and preliminary processing

We evaluated the proposed model on four publicly 
available datasets. We initially trained the model on the 
OCT2017, which was the main dataset, and then fine‑tuned 
it on the remaining three datasets. Each dataset varied 
significantly in image size, dataset size, and OCT device 
types, providing a comprehensive testbed for assessing 
our model’s adaptability and robustness across different 
clinical imaging conditions. These variations are critical 
for demonstrating the model’s flexibility and generalization 
capabilities in real‑world scenarios. The results, as detailed 
in our manuscript, confirm that the model consistently 
maintains high‑performance levels despite the complexities 
introduced by different imaging technologies and dataset 
limitations. This adaptability is crucial for reliable clinical 
diagnostic tools, ensuring their efficacy across varied 
clinical settings.

OCT2017:[32] This widely used dataset contains 84,484OCT 
images, with 83,484 images allocated for training and 
1000 for testing. The dataset includes four retinal states: 
normal, choroidal neovascularization  (CNV), DME, and 
drusen. To ensure consistency across images, we resized 
them to a uniform size of 128 × 128 pixels. In addition, we 
preprocessed each image by extracting 256 smaller patches 
of size 8 × 8 pixels. The dataset is publicly available https://
www.kaggle.com/datasets/paultimothymooney/kermany2018.

Noor Eye Hospital  (NEH):[35] This dataset, collected from 
NEH in Tehran, consists of OCT scans categorized into 
three classes: normal, AMD, and DME. It includes 50 
normal scans, 48 AMD scans, and 50 DME scans. While 
the axial resolution remains consistent at 3.5  µm across 

scans, both lateral and azimuthal resolutions vary between 
patients. This variation results in images with either 512 
or 768 A‑scans, and the number of B‑scans per volume 
can range from 19 to 61 depending on the individual. 
The dataset is publicly available https://misp.mui.ac.ir/en/
dataset-oct-classification-50-normal-48-amd-50-dme-0.

OCTID Dataset:[60] The OCTID dataset encompasses 
over  500 spectral‑domain OCT volumetric scans, 
available in high‑resolution jpeg format and grouped into 
several disease categories. For the purposes of our study, 
we extracted images classified under three categories: 
normal  (NO), diabetic retinopathy, and AMD. Each scan 
from the dataset includes a fovea‑centered image selected 
by a skilled clinical optometrist, with the images resized to 
500  ×  750 pixels for uniformity. The scans were captured 
using a Cirrus HD‑OCT machine at Sankara Nethralaya 
Eye Hospital, Chennai, India, providing a detailed basis 
for diagnosing and categorizing various stages of retinal 
pathologies. The dataset’s diverse range of disease stages 
offers a robust framework for evaluating the sensitivity 
and repeatability of diagnostic techniques. The dataset is 
publicly available https://borealisdata.ca/dataverse/OCTID.

OCTDL Dataset:[61] The OCTDL dataset consists of 2064 
high‑resolution OCT B‑scans, meticulously categorized 
to represent various retinal diseases and conditions. 
Each image, centered on the fovea, provides a detailed 
visualization of the retinal layers, posterior vitreous body, 
and choroidal vessels. Originally including multiple disease 
categories, our study specifically utilized images labeled 
as AMD and DME, focusing on these two classes due to 
their significant impact on vision quality and prevalence 
in clinical research. The open‑access nature of this dataset 
makes it a valuable resource for the development of 
diagnostic algorithms and the advancement of automatic 
processing techniques aimed at early disease detection. 
The dataset is publicly available https://data.mendeley.com/
datasets/sncdhf53xc/4.

Performance metrics

To evaluate the proposed model, we use three standard 
metrics: accuracy, sensitivity, and specificity, terms TP, 
FP, FN, and TN denote true positive, false positive, false 
negative, and true negative and is the number of samples 
in test set and is the number of classes. Results of these 

Table 5: Test results on optical coherence tomography 2017 dataset
Architectures Accuracy Sensitivity Specificity Parameters (m)
InceptionV3[32] 96.60 97.80 97.40 23.6
ResNet50[63] 99.30 99.30 99.76 25.64
MobileNet‑v2[64,65] 99.40 99.40 99.80 3.4
Xception[65] 99.70 99.70 99.90 22.8
OpticNet‑71[62] 99.80 99.80 99.93 12.5
Our model (horizontal) 99.50 99.50 99.83 6.9
Our model (vertical) 99.80 99.80 99.93 6.9

https://www.kaggle.com/datasets/paultimothymooney/kermany2018
https://www.kaggle.com/datasets/paultimothymooney/kermany2018
https://misp.mui.ac.ir/en/dataset-oct-classification-50-normal-48-amd-50-dme-0
https://misp.mui.ac.ir/en/dataset-oct-classification-50-normal-48-amd-50-dme-0
https://borealisdata.ca/dataverse/OCTID
https://data.mendeley.com/datasets/sncdhf53xc/4
https://data.mendeley.com/datasets/sncdhf53xc/4
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metrics are reported in Tables 5 and 6 and compared to the 
recent studies.

Accuracy =
N

TP1 ∑ � (6)

Sensitivity =
K

TP
TP+FN

1 ∑ � (7)

Specificity =
K

TN
TN +FP

1 ∑ � (8)

We also include the confusion matrix Figure  3 in addition 
to other performance metrics to provide a class‑wise 
breakdown of predictions. According to Table 5[62] and 
Figure 3, the proposed method has outstanding performance 
in the classification of OCT images. In addition, it can be 
seen from Table  5 that the proposed method has fewer 
parameters than the most comparing methods. The results in 
Table 5 are taken directly from the cited papers to provide a 
fair comparison with our model’s performance on the same 
datasets.

We arranged the patches in two different ways. In 
the first method, horizontal patches were arranged 
sequentially from left to right and then top to bottom. 
In the second method, vertical patches were arranged 
sequentially from top to bottom and then left to right. 
The second approach achieved the highest accuracy on 
this dataset. This result can be explained by the fact that 
each column of OCT data represents an A‑scan, which 
is a temporal signal with its amplitude encoded as pixel 
brightness. By arranging the patches column‑wise, the 

temporal sequence of the A‑scans is preserved, leading 
to better performance. Our results for both methods can 
be seen in Tables 5 and 6.

Training process

We trained our model using the stochastic gradient descent 
optimizer within the PyTorch framework, leveraging an 
Nvidia RTX 3050 Ti GPU. The initial learning rate was set 
at 0.01 and adjusted according to a decay schedule over the 
course of the training to facilitate optimal convergence. The 
training spanned 150 epochs, with each epoch averaging 
244 s on the OCT 2017[32] dataset. Our model demonstrated 
exceptional performance on this dataset, achieving a 
competitive accuracy of 99.80% and maintaining remarkable 
parameter efficiency with only 6.9 million parameters. 
This efficiency is significant when compared to other 
state‑of‑the‑art architectures, as shown in Table 5.

Fine‑tuning process

To assess the model’s adaptability and performance across 
various datasets, we fine‑tuned the pretrained model 
on additional datasets, including NEH,[35] OCTID,[60] 
and OCTDL.[61] Pretrained weights from the OCT2017 
training phase were utilized, and an additional layer was 
incorporated at the end of our model. During fine‑tuning, 
we selectively adjusted only the last five layers of the 
encoder layers, whereas the earlier layers were frozen to 
retain the generalized features previously learned.

During the fine‑tuning phase, we employed a 5‑fold 
cross‑validation method, limiting the training to a 

Table 6: Additional experiment results
Performance metrics are based on five‑fold cross‑validation, with each fold trained for 15 epochs

Datasets Classes Architectures Accuracy Sensitivity Specificity
NEH[35] AMD, DME, 

normal
ResNet50[63] 82±2.1 82±2.4 89.8±1.6
InceptionV3[32] 81.7±1 82.2±0.7 90.8±0.7
Our model (horizontal) 81.12±2.1 81.17±1.5 90.21±2.1
Our model (vertical) 82.08±2.1 81.34±2.44 90±0.87

OCTID[60] AMD, DR, 
normal

ResNet50[63] 92.4±2.9 86.22±5.9 95.87±1.54
InceptionV3[32] 87.8±2.9 77.80±3.0 93.1±1.9
Our model (horizontal) 91.8±2.5 87.1±5.8 95.5±1
Our model (vertical) 92.19±3.1 87.27±2.8 95±3.2

OCTDL[61] AMD, DME ResNet50[63] 95.06±0.6 63.85±12.4 98.78±1
InceptionV3[32] 93.38±2.3 44.31±26.6 99.12±1.3
Our model (horizontal) 93.6±1.2 76.32±5.9 96.38±2.2
Our model (vertical) 95.33±2.2 87.54±8.6 96.61±2.5

AMD – Age‑related macular degeneration; NEH – Noor eye hospital; DME – Diabetic macular edema; DR – Diabetic retinopathy; OCTDL 
– Optical coherence tomography dataset for image-based deep learning; OCTID – Optical coherence tomography image database

Table 7 : Ablation study on optical coherence tomography 2017 dataset
Architectures Pretrained 3D feature extractor Accuracy Time (s) Parameters (m)
Proposed method ✘ ✔ 99.8 244 6.9
Pure ViT ✘ ✘ 48 600 5.9
ViT‑b‑16 ✔ ✘ 96.9 1026 85.8
3D – Three dimensional; ✔ – Included/Applied; ✘ – Excluded/Not applied
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maximum of 15 epochs per fold to prevent overfitting and 
ensure robustness across varied datasets.[66]

Results
The model’s robustness was further validated across multiple 
datasets, demonstrating its versatility and effectiveness in 
different clinical settings. Specifically, the model achieved 
accuracies of 82.08% on the NEH[35] dataset, 92.19% on the 
OCTID[60] dataset, and 95.33% on the OCTDL[61] dataset. 
Notably, it excelled in the detection of Diabetic Macular 
Edema (DME) B-scans, where it showed a high accuracy 
of 91.89% on the NEH[35] dataset. This capability is crucial 
for early diagnosis and intervention, which can prevent 
potential vision loss, underlining the model’s practical 
significance in real-world medical applications. Table 6 
expands on more results, providing a detailed comparison 
and further insights into the model’s performance across 
these diverse datasets. These results affirm the model’s 
utility in clinical environments, providing a reliable tool 
for the early detection and treatment of significant retinal 
conditions.

Ablation experiments

Our proposed model for OCT image classification, a 
hybrid ViT architecture, achieved a remarkable maximum 
accuracy of 99.80 on the OCT 2017 dataset. This model 
also boasts impressive efficiency, requiring only 244 s per 

training epoch and maintaining a relatively low parameter 
count of 6.9 million. To understand the contribution of 
each component to this performance, we conducted a 
comprehensive ablation study, investigating the impact of 
various architectural elements.

The core innovation of our model lies in the 
preprocessing step that utilizes stacked Conv3D and 
MaxPool3D layers. In our study, we employ Conv3D 
and MaxPool3D layers for processing OCT images, 
tailored to the architecture of ViTs by converting 
images into patch sequences. This transformation 
leverages spatial‑temporal features effectively and 
ensures the model focuses on significant retinal data 
while minimizing background noise. Our methodology 
significantly enhances model performance, making it 
particularly effective for the unique properties of OCT 
imaging. This approach ensures a precise alignment with 
the needs of OCT image analysis.

To assess the effectiveness of this feature extraction 
approach, we removed these layers from the model. 
This resulted in a pure ViT architecture without any 3D 
feature extraction. In a pure ViT architecture, images are 
split into patches that are flattened into tokens, which are 
then processed by transformer layers using self‑attention 
to capture global relationships across the image. Unlike 
CNNs, which use convolutional layers to extract local 

Figure 2: Illustration of patch arrangement methods: Vertical arrangement preserves the temporal sequence of A‑scans (left to right and top to bottom), 
whereas horizontal arrangement processes patches sequentially (top to bottom and left to right)
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features, pure ViT relies solely on the attention mechanism 
to learn both local and global patterns.

While the model remained functional, its performance 
significantly dropped compared to the hybrid model. As 
shown in Table 7, the maximum accuracy ViT model 
was only 48, highlighting the crucial role of the Conv3D 
and MaxPool3D layers in capturing relevant spatial and 
potentially temporal features from the OCT image sequences.

To delve deeper into the influence of pre‑training, we 
compared the proposed method with a pre‑trained 
ViT  (vit‑b‑16), this model leveraged pretrained weights 
obtained from a large image dataset, promoting transfer 
learning to the medical image classification task. The 
pretrained model achieved a considerably higher maximum 
accuracy of 96.9. This substantial improvement highlights the 
effectiveness of pretraining in transferring learned features 
from a large image dataset to the OCT image classification 
task. However, training the pretrained ViT took 1026 s per 
epoch, significantly longer than the proposed method  (244s) 
and has a parameter count of 85 million, considerably larger 
compared to the previous method (6.9 million).

Table  8 expands on this by showing the impact of the 
preprocessing steps on computational complexity under 
different configurations. The column “Preprocess Step” 
indicates whether Conv3D and MaxPool3D layers were 

used. When these layers are applied, our model achieves 
the lowest floating‑point operations  (FLOPs) at 137.07 
GFLOPs with 6.98 million parameters, whereas without 
the preprocessing step  (using only Conv2D for patch 

Table 8: Impact of the preprocessing steps
Hyper‑parameters Value Preprocess 

step
Parameters 

(m)
FLOPs 

(GFLOPs)
Batch size 64 ✘ 6.06 984.5
Image size 256×256 
Patch size 16×16
Number encoder 11
Batch size 64 ✔ 10.13 403.8
Image size 256×256
Patch size 16×6
Number encoder 11
Batch size 64 ✘ 5.92 960.4
Image size 128×128
Patch size 8×8
Number encoder 11
batch size 64 ✔ 6.98 137.07
Image size 128×128
Patch size 8×8
Number encoder 11
FLOP – Floating‑point operation; GFLOP – Giga floating-point 
operations; ✔ – Included/Applied; ✘ – Excluded/Not applied 

Figure 3: Confusion matrices illustrating the performance of our model in classifying retinal diseases from four datasets: OCT2017, NEH, OCTID, and 
OCTDL. Each matrix corresponds to one dataset, with rows indicating the actual disease classes and columns showing the predicted classes. These 
results are derived from the last fold of a five‑fold cross‑validation process, highlighting the model’s diagnostic accuracy in various testing scenarios
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extraction), the FLOPs are substantially higher, reaching 
up to 984.5 GFLOPs with a similar parameter count. This 
highlights the effectiveness of our novel preprocessing 
approach in reducing the computational load while 
maintaining model accuracy.

Interpretation

DL models have revolutionized various fields, from image 
recognition to natural language processing. However, 
their intricate nature often resembles a black box, making 
it challenging to comprehend their decision‑making 
processes. This has led to the development of 
interpretation techniques, aimed at shedding light on 
the inner workings of these powerful models. One such 
technique utilizes heatmaps to visualize the image regions 
that significantly influence the model’s predictions. 
These heatmaps highlight the areas that the model deems 
crucial for classification, providing valuable insights into 
its decision‑making process. For supervised learning 
tasks, various interpretation methods have emerged, 
including rule‑based explanations and decision trees. 
These techniques extract interpretable rules or decision 
paths from the model, allowing for a more transparent 
understanding of its reasoning.

We employed occlusion sensitivity,[67] a technique to 
understand which regions of an input image contribute 
most to the model’s prediction for a specific class. It 
works by systematically occluding  (masking) different 
parts of the image and observing the change in the model’s 
output probability for the target class. Regions that cause 
a significant decrease in the target class probability 
when occluded are considered to be important for the 
model’s prediction. We used a sliding window approach 
with a window size of  (3, 16, 16) and strides of  (3, 2, 
2) to occlude image regions and analyze their impact on 
the prediction for the target class. The visualizations in 
Figure  4 present the original input image, along with the 
heat maps representing the attribution scores for the target 
class. Positive attribution scores  (green) indicate regions 
contributing to the prediction, while negative scores  (red) 
indicate regions potentially confusing the model. The 
masked image shows the input with occluded regions based 
on the occlusion sensitivity analysis. Our analysis revealed 
that the model heavily relies on the presence of the retinal 
layers within the OCT image for accurate classification. 
This is evident in the positive attribution heat map, where 
these regions exhibit high scores. Conversely, background 
noise and artifacts seem to have a negative impact, as 
indicated by the negative scores in certain areas of the 
heatmap. These findings align with our understanding of 
the task, where identifying and focusing on the distinct 
characteristics of the retinal layers  (e.g.,  thickness, 
reflectivity) is crucial for accurate classification of retinal 
diseases such as normal, CNV, DME, and drusen.

Computational complexity and efficiency comparison

In this section, we present a detailed computational 
complexity analysis comparing our proposed model, 
which utilizes Conv3D and MaxPool3D layers, with other 
state‑of‑the‑art models, including ViT‑B/16, ResNet50, 
MobileNet, and VGG‑16. This analysis includes the 
number of FLOPs and the number of parameters. The 
results are summarized in Table  9. All FLOPs, training 
time, and memory usage measurements were performed 
using an NVIDIA Tesla T4 GPU.

Our model achieves 137.071 GFLOPs, which is 
significantly lower than ViT‑b‑16, which requires 2.158 
TFLOPs–approximately 15  times more computational 
power. This reduction in computational complexity makes 
our model more efficient and suitable for environments 
where computational resources are limited, such as 
real‑time clinical settings.

With 6.982 million parameters, our model is relatively 
compact compared to ViT‑b‑16, which has 85.802 million 
parameters–more than 12  times the size. This reduction in 
parameters leads to faster training times, lower memory 
consumption, and easier deployment in resource‑constrained 
environments.

While ViT‑b‑16 is designed to process large and complex 
datasets, its computational complexity and number of 
parameters make it resource‑intensive. In contrast, our 
model balances the strengths of ViTs with the computational 
efficiency of Conv3D and MaxPool3D layers, making it 
more practical for OCT image classification.

Our model reduces the input sequence size by applying 
Conv3D and MaxPool3D layers, which compress redundant 
background information in OCT images. This allows the 
transformer blocks to process a more compact and relevant 
set of tokens, improving both computational efficiency and 
performance.

Discussion and Conclusion
In this study, a hybrid ViT architecture was proposed which 
can achieve a remarkable maximum accuracy of 99.80 on the 
OCT2017 dataset. This model also boasts impressive efficiency, 
requiring only 244 s per training epoch and maintaining a 
relatively low parameter count of 6.9 million. To understand 
the contribution of each component to this performance, we 

Table 9: Comparison of computational complexity
Architectures FLOPs (GFLOPs) Parameters (m)
ResNet50 525.5 25.557
MobileNet 39.3 3.505
VGG‑16 1982 138.357
ViT‑b‑16 2158 85.8
Our model 137 6.982
FLOP  –  Floating‑point operation; GFLOP  –  Giga floating-point 
operations 
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conducted a comprehensive ablation study. The ablation study 
revealed several key insights. First, the proposed incorporation 
of the 3D feature extractor with Conv3D and MaxPool3D 
layers significantly enhanced performance by capturing relevant 
spatial and potentially temporal features from the OCT image 
sequences. Second, pretraining with a large image dataset 
further improved accuracy but with a trade‑off in training time 
and parameter count.

Importantly, the hybrid ViT architecture is designed to be 
generalizable across various OCT imaging datasets. Its 

device‑independent property ensures consistent performance 
regardless of the hardware used, enabling widespread 
adoption in clinical settings. The insights gained from our 
ablation study not only validate the effectiveness of our 
approach but also provide a foundation for future research 
aimed at optimizing hybrid architectures for enhanced 
diagnostic accuracy and efficiency in diverse OCT imaging 
tasks. This positions our method as an advancement in the 
field, with the potential to improve patient outcomes through 
timely and accurate detection of conditions such as DME.

Figure 4: This figure visualizes how the model classifies retinal diseases in OCT images using occlusion sensitivity.[67] The original image (left) shows 
an OCT scan. The heatmap (center) highlights regions (green) the model relies on for classification (e.g., retinal layers). Areas with negative scores (red) 
might be confusing the model. The masked image (right) demonstrates how occluding specific regions affects the model’s prediction
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Further, we also trained the model on a laptop equipped 
with a Nvidia RTX3050 Ti, achieving approximately 5 min 
per epoch. This demonstrates that our model, despite 
utilizing Conv3D, remains computationally manageable. 
Comparative tests with Conv2D confirmed that our model 
does not exhibit a significant increase in parameter count, 
underlining its efficiency.
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