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Abstract
Background: Deep learning has gained much attention in computer‐assisted minimally invasive 
surgery in recent years. The application of deep‐learning algorithms in colonoscopy can be divided 
into four main categories: surgical image analysis, surgical operations analysis, evaluation of surgical 
skills, and surgical automation. Analysis of surgical images by deep learning can be one of the main 
solutions for early detection of gastrointestinal lesions and for taking appropriate actions to treat cancer. 
Method: This study investigates a simple and accurate deep‐learning model for polyp detection. We 
address the challenge of limited labeled data through transfer learning and employ multi‐task learning 
to achieve both polyp classification and bounding box detection tasks. Considering the appropriate 
weight for each task in the total cost function is crucial in achieving the best results. Due to the lack 
of datasets with nonpolyp images, data collection was carried out. The proposed deep neural network 
structure was implemented on KVASIR‐SEG and CVC‐CLINIC datasets as polyp images in addition 
to the nonpolyp images extracted from the LDPolyp videos dataset. Results: The proposed model 
demonstrated high accuracy, achieving 100% in polyp/non-polyp classification and 86% in bounding 
box detection. It also showed fast processing times (0.01 seconds), making it suitable for real-time 
clinical applications. Conclusion: The developed deep-learning model offers an efficient, accurate, and 
cost-effective solution for real-time polyp detection in colonoscopy. Its performance on benchmark 
datasets confirms its potential for clinical deployment, aiding in early cancer diagnosis and treatment.
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Introduction
Improving surveillance endoscopy, including 
colonoscopy, to prevent gastrointestinal 
cancers such as colorectal cancer, has 
always been an important area of research 
in gastrointestinal endoscopy. Detecting 
and removing adenomatous polyps protects 
patients from cancer progression. Therefore, 
the detection rate of polyps is considered 
an appropriate criterion for the quality of 
endoscopy.[1] Increasing the detection rate 
of polyps reduces mortality from colorectal 
cancer. However, the unacceptable high 
rate of missed neoplastic lesions still exists 
and varies among different endoscopists.[2] 
The wide range of size, tissue, shape, and 
color changes in polyps and the difficulty 
of distinguishing polyps from other tissues 
during endoscopy make this problem more 
complicated.[3] Thus, computer‑aided polyp 
detection  (CADe) systems were introduced 
to reduce the rate of polyp detection 

errors. Initial studies focused on the color 
and texture of polyps as the features that 
relevant specialists considered for each 
polyp.[4] Recently, newer methods based 
on deep neural networks  (DNNs) for 
polyp detection have gained attention. The 
use of artificial intelligence‑based CADe 
systems using DNNs for polyp detection 
has increased the detection rate of polyps in 
various studies.[5] Many commercial CADe 
systems have been introduced worldwide, 
including GI Genius,[6] Discovery,[7] 
EndoMind,[8] Ai4Gi,[9] and EndoBrain,[10] 
which utilize artificial intelligence for this 
purpose.

In an ideal situation, CADe systems 
should have constant performance and 
robust output against images from 
different patients, using different devices 
and endoscopy procedures, and detect or 
segment polyps in real time. To achieve 
appropriate performance of DNN structures, 
extensive data collection and labeling 
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by relevant specialists are required. Transfer learning is 
implemented as a method to overcome the problem of 
insufficient training data for deep learning systems.[11,12] 
This concept refers to using pretrained deep convolutional 
neural networks  (CNNs) on large natural image datasets, 
which have been widely used in various applications in 
medicine.

In this article, a DNN structure for polyp detection in 
endoscopic images is introduced that can be implemented 
with low memory and utilizes transfer learning to overcome 
the problem of insufficient training data. The novelty of this 
article is proposing an optimal simple and accurate model 
for polyp detection instead of using complicated structures 
such as R‑CNN, Retina Net, Dark Net, and Yolo with so 
many parameters to be trained. Another novelty of this 
work is considering a weighted loss function to fine‑tune 
this network to extract features for both object detection 
and classification. Our study contributes to this domain 
by proposing a neural network structure that integrates 
transfer learning and multi‑task learning to handle both 
classification and detection tasks simultaneously.

We organized this paper as follows: the common DNN 
structures implemented in the polyp detection studies 
are introduced in section two. In section three, the 
proposed DNN structure is described. Furthermore, in 
section four, the experimental results obtained from the 
utilization of KVASIR‑SEG and CVC‑CLINIC datasets are 
presented,[13,14] and in section five, conclusions are provided.

Related Works
Many studies have aimed to enhance the detection of 
polyps during colonoscopy using CNNs. In a study by 
Pozdeev et  al.,[15] a fully convolutional network  (FCN) 
with a novel structure that initially makes binary 
classification predictions and then processes them through 
a CNN similar to the U‑Net architecture is discussed. The 
proposed network achieves state‑of‑the‑art performance 
on the Kvasir‑SEG and CVC‑ClinicDB datasets. In a 
study by Lequan Yu et  al.,[16] a three‑dimensional, FCN 
for segmentation has been proposed. PraNet[17] provided 
real‑time segmentation capabilities using deep supervision 
mechanisms and a reverse attention module for boundary 
detection. PraNet also features a parallel partial decoder 
to improve its performance, and these modules have 
been incorporated into other innovative architectures 
like AMNet.[18] Furthermore, a study by Tomar et  al.[19] 
introduced a dual‑decoder network called DDANet, which 
employs a single ResNet‑style encoder with a dual‑decoder 
architecture to generate both a grayscale image and a 
segmentation mask.

In a study by Shin et  al.,[3] a region‑based CNN structure 
was used for automatic polyp detection. In this article, 
the authors used an Inception ResNet structure for polyp 
detection on colonoscopy images, utilizing transfer learning 

and postprocessing methods. In a study by	 Lee et  al.,[20] 
the YOLOv2 structure was explored to develop algorithms 
for polyp detection and localization. Further studies 
were done[21] to use improved YOLO network structures 
for polyp detection. The YOLO structures, as shown in 
Figure  1, consist of input, backbone, neck, and head. The 
Backbone section, which performs feature extraction from 
images, includes different CNN structures such as VGG16, 
ResNet50, ResNet101, and DarkNet. The neck, which 
extracts information from the layers of different networks 
placed in the backbone, can be FPN, PANet, and BiFPN 
networks. The structures located in the neck can be used to 
extract information related to different objects of different 
sizes. Finally, in the head section, detection networks such 
as RCNN and RFCN structures are used to detect bounding 
boxes.

In a study by Nogueira‑Rodríguez et al.,[22] a deep learning 
model for real‑time polyp detection based on a pretrained 
YOLOv3 architecture and a postprocessing step based on 
an object‑tracking algorithm to reduce false positives (FPs) 
is proposed. In YOLOv3, on top of Darknet53, 53 more 
layers were added for proper object detection, making 
it a 106‑layer CNN. The research done by Jha et  al.[21] 
provided a benchmark for polyp detection, localization, and 
colonoscopy segmentation on recent state‑of‑the‑art deep 
learning algorithms, including FasterRCNN, RetinaNet, 
YOLOv3  +  SPP, YOLOv4, and EfficientDet. It compared 
the execution performances and the differences between 
various algorithms on variable polyp sizes and image 
resolutions. In this article, the ColonSegNet is proposed 
to achieve a better trade‑off between an average precision 
and mean Intersection over Union  (IoU) and the fastest 
detection and localization task. One of the models used in 
the study was EfficientDet, which is based on EfficientNet 
backbone architecture. Other models used were Faster 
R‑CNN, YOLOv3, and YOLOv4. Qian et  al.[23] also 
presented an enhanced FasterRCNN‑based system for 
polyp detection.

Reddy et  al.[24] utilized the advanced YOLO‑v4 detection 
model for polyp detection during colonoscopy. The model’s 
performance was evaluated based on the Multiple Object 
Tracking Accuracy and Multiple Object Tracking Precision 
criteria of the custom dataset. In a study by	Ghose et  al.,[25] 
a fine‑tuned YOLO‑v5 model for polyp colonoscopy was 
proposed. The model achieved competitive results with 
other deep learning techniques such as R‑CNN, Faster 
R‑CNN, and YOLO‑v4. Three variants of YOLOv5  (s, 
m, and l) were employed by Al Amin et  al.[26] to analyze 
Kvasir‑SEG data. According to the research, YOLOv5l 
outperformed the other models in polyp identification, with 
an IoU of 86.25%.

All the indicated methods employ complex architectures 
requiring substantial computational resources. In contrast, 
our method emphasizes a balance between computational 
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efficiency and detection performance. By utilizing 
a pretrained ResNet50 for feature extraction and a 
streamlined network for detection and classification, our 
model is both resource‑efficient and highly accurate. This 
makes our approach more accessible for deployment in 
resource‑limited settings without sacrificing performance.

The ENDOMIND software, which is a publicly available 
software, is based on the YOLOv5 structure. The weights 
of the YOLOv5 structure used in this study were pretrained 
on public colonoscopy datasets and then fine‑tuned on 
datasets collected from German hospitals. However, due 
to the complexity of the structure, its usage is usually 
limited to fine‑tuning its parameters on pretrained networks 
for the desired dataset, and modification of the structure 
is challenging. Another problem with using this structure 
is its requirement for graphics processing unit  (GPU) 
for computations. Therefore, we designed and trained 
our neural network structure and evaluated its results to 
overcome these challenges and improve the structure.

The Proposed Neural Network Structure
Our designed DNN structure consists of feature extraction, 
regression, and classification modules  [Figure  2]. The 
pretrained ResNet50 CNN, which was trained on more 
than one million images on the ImageNet dataset, was used 
for transfer learning to extract features from input images. 
This structure comprises a 50‑layer CNN with residual 
connections. In this article, ResNet 50 is considered as 
the first module for feature extraction and simply, the 
regression and classifier modules are considered on top of 
it. As indicated in a study by Ahamed et  al.,[27] ResNet50, 
with distinctive residual connections and 50‑layer depth, 
efficiently tackles the complexities of training DNNs. 
Therefore, this model serves as a strong basis for building 

specialized models with improved generalization abilities 
Moreover, this model, on one hand, has a small number 
of parameters concerning other deep structures, making 
the model not overfit on the training data, with respect 
to Resnet 101 and Darknet 53[28] and, on the other hand, 
achieves comparable polyp detection results with respect to 
the proposed Yolo structures as it is shown in Table 1.

The regression and classification modules are designed 
by three‑layer feedforward neural network structures that 
receive the extracted features from the last hidden layer of 
the ResNet network as input and calculate polyp bounding 
boxes information in the output after several processing 
steps in the regression section. The presence or absence of 
polyps in each image frame is detected in the classification 
section.

To train this network structure, the mean squared 
error  (MSE) loss function was used,[29] which is calculated 
based on the weighted sum of the MSE loss function for 
the regression module and defined as follow:
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where, is the desired output of each neuron j in the 
regression module for input i, and is the calculated output by 
the network for that neuron. Similarly, and are the desired 
and calculated output of neuron j in the classification section 
for each input I, respectively. The coefficient λ represents 
the importance of the regression and classification errors 
in training the entire network weight matrix, which is 
determined during the training process.

Figure 1: YOLO structure
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Experimental Results
Experimental setup

Initially, the KVASIR‑SEG dataset was implemented for 
training the network. This dataset contains the largest 
number of labeled samples, including images of polyp masks 
as well as their bounding box information in a json file.

It comprises 1000 colonoscopy images with polyps and 
their corresponding masks. The resolution of images in this 
dataset varies from 487  ×  332 to 1072  ×  1920 pixels. To 
increase the training data, the CVC‑Clinc dataset images 
were also added to the KVASIR dataset. This dataset 
consists of 612 colonoscopy images with polyps and their 
mask images.

Due to the lack of datasets without polyps, noise‑free frames 
with no blurring or specularity were selected from the videos 
in the LDPolyp dataset. Among these frames, 1586 images 
were selected for training the network. Then, to have the 
same dimensions for all images, the input image size was 
changed to 224  ×  224 pixels. Some examples of nonpolyp 
images used for training the proposed network are shown in 
Figure 3.

The performance evaluation of the proposed DNN structure 
for object detection was conducted by measuring the 
overlap range of detected bounding boxes  (A) by the 
network, with the labeled bounding boxes  (B) using IoU, 
which is calculated as shown in eq. 2.[30]

( ) A BIoU A, B = 
A B
∩
∪

� (2)

Experiments were conducted using the PyTorch library 
on a system with the following specifications: Intel 
Core i7  6700  3.4 GHz, 32 GB RAM, Nvidia Geforce 
GTX1060 6GB.

Results
The experiments reported in this section include (1) evaluation 
of the proposed structure on KVASIR and CVC‑CLINIC 
datasets. Since these datasets include only polyp images, the 
implemented structure includes only a regression module, (2) 
Addition of generated nonpolyp images to the previous 
dataset and training of the proposed structure with both 
classifier and regression modules. And,  (3) Comparing the 
performance of the proposed structure with Yolov5 as the 
state‑of‑the‑art model in object detection.

As the first step, the bounding box information of the polyps 
was extracted from the available mask of each image in the 
datasets and used as the label for training the network. Then, 
in the first experiment, the proposed DNN structure (without 
the classification branch) was trained on the KVASIR‑SEG 
dataset. Eighty percent of the images were considered for 
training and the remaining 20% were used to test the model. 
The data were divided into batches of 32 samples for training 
the model. The MSE loss function and Adam optimizer 
were used to adjust the parameters. The learning rate of the 
model was set to 0.001, and the network was trained for 20 
iterations. The achieved results of the network on the test 
set are reported in Table  2. By adding the CVC‑CLINIC 
dataset to the training data, the performance of the network 
was improved as shown in Table  2. In this table, the 
number of test images with the IoU > 0.5 is considered true 
positive  (TP), the number of test images with an IoU less 
than this value is considered FP, and false negative  (FN) is 
the number of test images with IoU equal to zero.

As shown in the above table, increasing the diversity of the 
training data by combining two datasets has improved the 
network’s generalizability and improved its performance 
by up to 7%. Figure  4 shows some examples of the 
proposed neural network’s performance in polyp detection. 
As observed in this figure, the designed DNN is capable 
of accurately detecting polyp bounding boxes even with 
missing visual information.

In addition to the above cases, this network has been able 
to accurately predict the presence of hidden polyps in 
images that have polyps but are not correctly labeled by 

Table 1: Comparison of accuracy and processing time of 
the proposed structure with the EndoMind software

Used structure TP Time processing (s)
EndoMind 88 0.02
Proposed structure 86 0.01
TP – True positive

Figure 2: Proposed deep neural network structure, consisting of three parts: Feature extraction, classifier, and regression modules
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the specialists. Figure  5 shows some examples of Polyp 
detection by the proposed method that have not been 
labeled by the specialist.

Due to the limited availability of data, cross‑validation 
was used for a more accurate evaluation. In this case, we 
used 5‑fold cross‑validation which randomly divided data 
into five folds, and each time, 4 folds were considered for 
training and 1‑fold for testing. The confusion matrix by 
averaging the results on test images, considering different 
ranges of IoU between the detected bounding boxes and 
the labeled ones, is provided in Table 3.

In the above table, the true negative  (TN) parameter is not 
defined due to the lack of data without polyps.

In the second experiment, the addition of data without polyps 
and considering 80% of the total data for training and the 
remaining 20% for testing while using stratified sampling to 
adjust the diversity of data with and without polyps in each 

batch of training and testing, the model was trained. In this 
step, the classification and the regression modules of the 
model were simultaneously trained using backpropagation to 
minimize the total loss function, which is calculated as the 
weighted sum of the loss function of each module.

The evaluation of the proposed model with both classifier and 
regression modules includes evaluating its object detection and 
classification performances. Therefore, Table  4 is considered 
to verify the object detection performance by calculating the 
confusion matrix based on the IoU parameter. Therefore, for 
polyp images, the number of test images with an IoU  >  0.5 
is considered TP, and those with an IoU less than this value 
are considered FN. For nonpolyp images, the number of test 
images with calculated bounding boxes for them is considered 
as FP, and those with no object prediction are considered as 
TN. In Table  5, we evaluated the confusion matrix for the 
classification task. Our experimental results show the TP and 
TN values of 100% and FP and FN values of zero.

Table 2: Performance of the network using the 
Kvasir‑SEG dataset and the combined Kvasir‑SEG and 

CVC‑CLINIC datasets as training data
Trained dataset TP (%) FP (%) FN (%)
Kvasi‑SEG 66 24 10
Kvasir‑SEG + CVC‑CLINIC 71 18 11
TP – True positive; FP – False positive; FN – False negative

Table 3: The confusion matrix calculated from 
evaluating the trained network on the polyp dataset

Actual Predicted
Positive (%) Negative (%)

Positive TP=72.88 FP=17
Negative FN=10 TN=UNK
TP – True positive; FP – False positive; FN – False negative; 
TN – True positive, UNK – Unknown

Figure 3: Some sample images collected from the nonpolyp dataset

Figure 4: Some examples of the proposed network’s performance in detecting polyp bounding boxes. (The detected polyps are shown by red squares)

Figure  5: Polyp detection by the proposed structure  (right column) for 
images with polyps that have not been labeled correctly by the specialist. 
The specialist labels are shown by arrows (left column)
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The required time for training the entire weight of this 
network structure using GPU is 15.02 s with a standard 
deviation of 0.13, and the required time for processing each 
image by this model is 0.13 s with a standard deviation of 
0.007 s. It should be noted that this structure can also be 
implemented on a central processing unit.

The Yolov5 structure is considered in the EndoMind 
software to detect polyp bounding boxes. Therefore, in the 
third experiment, the performance of the proposed DNN 
is compared with the Yolo‑v5 on KVASIR‑SEG data, 
which is considered one of the training datasets for both 
structures. Since EndoMind has been trained on the whole 
KVASIR‑SEG dataset in addition to the other datasets, 
the evaluation of both models was performed when our 
model was trained and tested on the total KVASIR‑SEG 
dataset, too. In Table  1, you can find the comparison of 
the performance of these two structures as well as the 
processing time requirement of each structure per image.

Discussion and Conclusion
In this paper, a DNN structure for polyp detection on 
endoscopic images was introduced. The simplification of 
the network structure resulted in a decrease in the model 
test time to 0.01 s per frame, which is suitable for real‑time 
applications. The proposed structure has low structural 
complexity for practical implementation in hardware with 
low cost. Due to the lack of labeled data of endoscopic 
videos, transfer learning was used in the pretraining of 
this structure. Furthermore, the network was trained for 
two tasks, namely detecting polyp bounding boxes and 
determining the presence/absence of polyps, by using 
multi‑task learning and adjusting the weight of each task 
in the training process. In this regard, data collection was 
also carried out for images without polyps. The results 

verify that this structure was able to correctly detect 
polyps and ignore the labeling errors made by experts in 
some cases. In addition, by increasing the diversity of the 
training data, the generalization capability of the network 
improved. This result indicates the need for using more 
diverse data to improve the performance of the proposed 
structure. Moreover, to ensure the reliability of the results 
due to the lack of training data, cross‑validation was used 
to evaluate the model by considering different parts of the 
data for training and testing. The confusion matrix obtained 
from the evaluation of the network with both regression 
and classification modules indicates that this network 
structure was also able to detect polyp bounding boxes in 
polyp frames with an acceptable accuracy while detecting 
all nonpolyp frames.

In conclusion, our proposed method offers several 
advantages, including a simplified architecture suitable 
for low‑cost hardware, efficient processing times, and 
robust performance even with limited training data. By 
integrating transfer learning and multi‑task learning, our 
model provides a comprehensive solution for real‑time 
polyp detection in endoscopic and colonoscopy videos. 
We believe that these comparisons with existing successful 
methods demonstrate the efficacy and practicality of our 
approach.
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