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Abstract
Background: This study aimed to evaluate the effectiveness of clinical, dosimetric, and radiomic 
features from computed tomography (CT) scans in predicting the probability of heart failure in breast 
cancer patients undergoing chemoradiation treatment. Materials and Methods: We selected 54 breast 
cancer patients who received left‑sided chemoradiation therapy and had a low risk of natural heart 
failure according to the Framingham score. We compared echocardiographic patterns and ejection 
fraction  (EF) measurements before and 3  years after radiotherapy for each patient. Based on these 
comparisons, we evaluated the incidence of heart failure 3  years postchemoradiation therapy. For 
machine learning (ML) modeling, we first segmented the heart as the region of interest in CT images 
using a deep learning technique. We then extracted radiomic features from this region. We employed 
three widely used classifiers  –  decision tree, K‑nearest neighbor, and random forest  (RF)  –  using a 
combination of radiomic, dosimetric, and clinical features to predict chemoradiation‑induced heart 
failure. The evaluation criteria included accuracy, sensitivity, specificity, and the area under the 
receiver operating characteristic curve  (area under the curve  [AUC]). Results: In this study, 46% 
of the patients experienced heart failure, as indicated by EF. A  total of 873 radiomic features were 
extracted from the segmented area. Out of 890 combined radiomic, dosimetric, and clinical features, 
15 were selected. The RF model demonstrated the best performance, with an accuracy of 0.85 and 
an AUC of 0.98. Patient age and V5 irradiated heart volume were identified as key predictors of 
chemoradiation‑induced heart failure. Conclusion: Our quantitative findings indicate that employing 
ML methods and combining radiomic, dosimetric, and clinical features to identify breast cancer 
patients at risk of cardiotoxicity is feasible.
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Introduction
Breast cancer is the most prevalent cancer 
among women worldwide.[1,2] The risk of 
developing heart failure after radiation 
therapy depends on the radiation dose; as 
the dose increases, so does the likelihood of 
complications.[3] The highest dose received 
by the heart in most patients undergoing 
breast radiation therapy affects its anterior 
portion, including the left anterior 
descending coronary artery.[4] Periodic 
cardiovascular system monitoring during 
oncological treatment is crucial to prevent 
these complications.[5] Echocardiography 
and electrocardiography are essential 
tools for assessing left ventricular systolic 

function. Echocardiography, a noninvasive 
method of evaluating heart function, can 
determine heart valve disorders, pericardial 
disease, left ventricular ejection fraction 
(LVEF), and diastolic and systolic function. 
It can detect heart damage in patients 
undergoing radiation therapy before clinical 
signs become apparent.[6]

Over the past decade, medical image 
analysis has significantly advanced due 
to improvements in diagnostic tools and 
the expansion of datasets.[7] Machine 
learning (ML), a subset of artificial 
intelligence, involves the development of 
computer algorithms that can replicate 
human intelligence.[8,9] Radiomics, a new 
and promising approach to personalized 
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treatment, involves extracting invisible and quantitative 
features from medical images. Analyzing these features can 
provide predictive information about a patient’s prognosis 
and aid in clinical decision‑making for many cancers. 
Despite the large volume of data in medical imaging, ML 
algorithms are increasingly utilized in oncology. They 
have applications in cancer diagnosis, staging, treatment 
simulation, treatment design, quality assurance, response 
to treatment, and predicting complications.[10‑12] Given the 
significant advances in radiotherapy  (RT), the improvement 
of oncological treatment methods, and the extension of 
patients’ lives, managing the side effects of long‑term 
treatment is essential. Since cardiovascular complications 
are the most crucial chronic side effects in breast cancer 
treatment, predicting these complications before starting 
therapy is vital.[4,13,14]

In 2014, the American Society of Echocardiography  (ASE) 
and the European Association of Cardiovascular Imaging 
(EACVI) issued an expert consensus statement on 
multimodality imaging assessment in adult patients during 
and after cancer treatment, attempting to define cardiotoxicity. 
According to this statement, cancer treatment‑related cardiac 
dysfunction  (CTRCD) is characterized by a reduction in 
LVEF of at least 5% to  <55%, accompanied by signs or 
symptoms of heart failure or a decrease in LVEF of at least 
10% to  <55% without evident signs and symptoms.[15‑17] 
Studies have shown that chemoradiotherapy  (CRT) for 
breast cancer can lead to cardiac toxicity in 10%–30% of 
patients, with a decrease in cardiac EF by approximately 
10%–50%.[15,16] In 2011, a study examined 42 breast cancer 
patients  (aged 38–56  years) treated with trastuzumab 
and RT with an unspecified average anthracycline dose. 
After treatment, a significant reduction in LVEF of 10% 
or more to  <55% was observed during the 3rd, 6th, 9th, and 
12th  months, accompanied by signs and symptoms of heart 
failure and the cessation of chemotherapy. The incidence of 
cardiac toxicity was 10%.[17]

The goal of our current research was to predict the 
development of heart failure caused by chemoradiation 
in breast cancer patients by analyzing their computed 
tomography  (CT) scans using various ML methods. The 
reduction in EF indicates cardiac impairment, and we 
applied well‑established supervised learning algorithms to 
assess medical images.

The novelty of this paper lies in using Artificial Intelligence 
to analyze CT imaging, dosimetrists, and clinical and 
demographic parameters. This approach may help the 
early prediction of cardiovascular toxicity, enabling the 
prevention of its progression and the precise customization 
of therapeutic pathways for patients.

Materials and Methods
Data collection

This study included 54 adult breast cancer patients 
(21–80  years) treated for Stage I‑IIIA breast cancer 
who received CRT between January 2018 and January 
2020  [Table  1]. The sample size was determined based 
on statistical calculations, this value of patients has also 
been used in similar previous studies.[11,18] The study 
excluded patients with distant lymph node metastases, solid 
metastases, or missing treatment‑related information.

Patient demographics such as age, body mass index, and 
comorbid conditions were gathered from the Sina and 
Khansari Medical Centers. Detailed information on breast 
cancer therapy, including chemotherapy and total radiation 
doses, was obtained from hospital medical records. Survival 
and cardiovascular outcomes were determined at the Sina 
Medical Center.

In this study, by selecting patients based on the Framingham 
risk score, we purposefully included patients from the low 
cardiovascular risk group to reduce the influence of other 
influential variables in heart failure and focus our analysis 
on the effects of radiomics and chemoradiation variables. 
Patients with Framingham risk score higher than 5% were 
excluded from the study.[19] The Framingham risk score is a 
well‑established tool that evaluates the risk of developing 
coronary issues by considering factors such as gender, 
age, total cholesterol, high‑density lipoprotein cholesterol, 
systolic blood pressure, and smoking status. It calculates a 
patient’s risk of myocardial infarction and cardiac death, as 
well as the probability of developing clinical cardiovascular 
diseases, stroke, peripheral vascular disease, chronic heart 
failure, and cardiac death over 10 years.

Treatment planning

The patients were subjected to three‑dimensional  (3D) 
conformal radiation therapy, receiving a total dose of 

Table 1: Demographic and clinical data of patients
Parameters Value
Age (years), median (range) 54 (21–80)
Chemoradiation therapy 34 patients
Only radiation therapy 20 patients
V5 (%) 6 (average)
V10 (%) 0.54 (average)
V25 (%) 1 (average)
Total dose (Gy) 50
Dose/fraction (Gy) 2
Number of fractions 25
Hypertension 9 patients
HER2 positive 12
V5 – The volume of heart (%) receiving 5 Gy; V10 – The volume of 
heart (%) receiving 10 Gy; V25 – The volume of heart (%) receiving 
25 Gy; HER2 – Human epidermal growth factor receptor 2
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50 Gy in five fractions per week. Among these patients, 34 
received chemotherapy before RT with the following drugs: 
cyclophosphamide  (23  patients), doxorubicin  (17  patients), 
herceptin  (15  patients), paclitaxel  (15  patients), 
epirubicin  (seven patients), carboplatin  (three patients), 
and cisplatin (one patient). Some patients were treated with 
multiple chemotherapy drugs. The remaining 20  patients 
received only RT.

Before starting CRT, all patients underwent echocardiography 
and CT imaging. CT scans were performed with 100  kV, 
220 mAs, and a slice thickness of <5 mm.

Follow‑up examinations

Follow‑up examinations were conducted 36  months after 
CRT. These results were compared to each patient’s initial 
EF, which served as the baseline. All echocardiographic 
images were obtained using a Philips EPIQ 7c 
echocardiography apparatus. Calculation of LVEF is done 
with two‑dimensional echocardiography using manual 
biplane measurement according to the Simpson method by 
an expert cardiologist. This method requires the measurement 
of LVEF by tracing the endocardial border in both the 
apical four‑chamber and two‑chamber views in end‑systole 
and end‑diastole.[20] In defining cardiotoxicity, we relied 
on the expertise of the ASE and the EACVI. According to 
their statement, CTRCD is characterized by a reduction in 
LVEF of at least 5% to  <55%, accompanied by signs or 
symptoms of heart failure, or a decrease in LVEF of at least 
10% to  <55% without evident signs and symptoms.[15‑17] 
Following this definition, we categorized patients into two 
groups: 1 (with heart toxicity) and 0 (without heart toxicity).

Image preprocessing

We prepared the images for feature extraction during image 
preprocessing by resampling the voxel size to create an 
isotropic dataset. Interpolation was applied to all patients’ 
images to facilitate comparisons between data acquired 
from various samples and scanners.[21] We resampled 
the images to a resolution of 1  mm  ×  1  mm  ×  1  mm, 
followed by the application of several filters, including 
Wavelet Decomposition  (WAV)[22] and Laplacian of 
Gaussian (LOG).[23] Different sigma values, ranging from 0.5 
to 5 in increments of 0.5, were used with the LOG filter to 
extract features at fine, medium, and coarse scales. The use 
of Wavelet Decomposition and LOG filters was motivated 
by their complementary abilities to capture fine and coarse 
image features, crucial for identifying subtle structural 
changes in the heart tissue. Furthermore, they can capture 

multiscale textures and edges, offering spatial and frequency 
information crucial for conducting detailed radiomic 
analyses. Wavelet decomposition allows multiresolution 
analysis of the images, whereas LOG filter effectively 
detects important anatomical boundaries at multiple scales. 
These filters greatly improved the quality of the preprocessed 
images and enabled the extraction of valuable radiomic 
features for our ML models.[21‑23] The Wavelet filter provided 
eight decompositions at all levels, encompassing all possible 
combinations of high‑pass and low‑pass filters in each of the 
three dimensions, resulting in combinations such as HHH, 
HHL, HLH, HLL, LHH, LHL, LLH, and LLL. Traditional 
threshold functions have limitations in wavelet denoising; 
a hard threshold function is characterized by discontinuity, 
while a soft threshold function results in constant deviation. 
To address these issues, we employed an enhanced wavelet 
threshold for denoising.[22] The preprocessing algorithms, 
including interpolation, WAV, and LOG, significantly 
improved the quality of the CT images.

Heart autosegmentation through deep learning

Experienced radiotherapists, under the supervision of a 
specialist, used 3D‑Slicer software to annotate the heart and 
define the region of interest (ROI). The entire cardiac muscle 
was delineated as the ROI. This process involved iteratively 
going through each image slice and drawing contours along 
the boundaries to delineate areas of interest accurately.

Since manual heart segmentation can be time‑consuming while 
dealing with big datasets, two deep‑learning models were 
implemented to make this process automatically applicable 
[Figure  1]. For this mean, we use both SwinUNETR and 
nnUNet models for heart autosegmentation.[24,25] This decision 
was motivated by the need to evaluate multiple state‑of‑the‑art 
deep learning architectures and determine which one could 
provide the most accurate segmentation for our specific 
dataset. Both models have been widely recognized for their 
performance in medical image segmentation tasks, but they use 
different architectures and approaches that offer complementary 
strengths. SwinUNETR was chosen because it leverages the 
Swin Transformer architecture, which is particularly efficient in 
handling large‑scale medical imaging datasets. The hierarchical 
vision transformer used in SwinUNETR enhances the 
computational efficiency of self‑attention mechanisms, making 
it well suited for complex tasks like heart segmentation. 
nnUNet was included in our study due to its flexibility and 
adaptability to a wide range of segmentation tasks. nnUNet 
automatically configures its architecture, preprocessing, and 
training strategies to the dataset at hand, ensuring an optimal 
model for the specific segmentation task.[24,26] Both models 
were trained and validated on the same dataset to ensure a fair 
comparison. The performance of these models was evaluated 
using the Dice coefficient, a widely accepted metric for 
segmentation tasks [Table 2].

To optimize the model hyperparameters, we systematically 
explored various combinations, including different learning 

Table 2: Segmentation accuracy of heart with 2 different 
deep learning models on dataset

Deep learning model Dice coefficient, mean±SD
nnUNet 0.82±0.02
SwinUNETR 0.84±0.01
SD – Standard deviation
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rates, batch sizes, and data augmentation strategies. 
Preprocessing steps included intensity normalization 
(scaling intensities from  −  175 to 250), cropping the 
foreground to focus on the heart, reorienting images to 
RAS orientation, and resampling them to uniform spacing 
of 1.5  mm  ×  1.5  mm  ×  2.0  mm. Random augmentations, 
such as flips and intensity shifts, were also applied 
during training to enhance model robustness and prevent 
overfitting. During SwinUNETR training, various data 
augmentation techniques were applied, including random 
flips across spatial axes 1 and 2, random rotations with 
a 10% flipping probability, and random intensity shifts 
with a 50% flipping probability within a 10% offset 
range. Patch‑based SwinUNETR utilized patch sizes of 
96  ×  96  ×  32 for 30,000 training iterations, implemented 
using the MONAI library.[27] A batch size of 2 for 
training and 1 for testing was selected to balance memory 
usage and training time while maintaining stable model 
convergence. The Adam optimizer was employed with a 
weight decay of 1e‑5 and a learning rate of 1e‑4, ensuring 
stable convergence without the instabilities seen with 
higher rates or the slower convergence of lower rates.[28] 
In addition, SwinUNETR was initialized using pretrained 
self‑supervised weights to improve model performance 
from the start of training. These hyperparameter choices 
were based on multiple trials, and the selected values 

yielded optimal segmentation accuracy. The dataset was 
partitioned into 12% for evaluation, 10% for testing, and 
78% for training.

The nnUNet version  1 was trained for 1000 epochs 
using the stochastic gradient descent method with an 
initial learning rate of 0.01 and a batch size of 2. Data 
augmentation techniques included random rotations, 
random scaling, elastic deformations, and random cropping, 
along with intensity augmentations such as brightness and 
contrast adjustments to improve model robustness. Based 
on the evaluation metrics in Table  2, SwinUNETR was 
selected for segmentation due to its superior performance 
in terms of segmentation accuracy compared to nnUNet.

Features extraction

Radiomic features were extracted from the segmented heart 
region using a custom extension of 3D Slicer software. 3D 
Slicer is an open-source medical image computing platform 
for biomedical research and freely downloadable (www. 
slicer.org). A total of 873 radiomic features were acquired 
from ROI using the 3D Slicer Figure 2.

Feature selection

In our study, we employed multiple feature selection 
methods to identify the most important features for 
predicting chemoradiation‑induced heart failure from a 
combined set of 890 radiomic, dosimetric, and clinical 
features. Specifically, a combination of filter and embedded 
methods was used in the selection process. First, using 
Kendall’s rank correlation coefficient, features that had the 
highest correlation with the target variable  (heart failure) 
were selected. Features with a correlation coefficient 
exceeding a specified threshold were chosen for the next 
stage. Next, to further reduce dimensionality and select the 
best features, we applied cross‑validation along with the 
random forest (RF) algorithm. RF allowed us to evaluate the 
importance of each feature based on its predictive power in 
the model. The final features were selected based on their 
importance in different models, including RF and decision 
tree  (DT). These methods ensured that only the most 
impactful features for predicting heart failure were chosen. 
This combination of feature selection methods enabled 
us to reduce the original 890 features to 15 key features, 
dimensionality reduction helped to mitigate overfitting and 

Figure  2: Segmented area of heart. This step is done by experienced 
radiotherapists under the supervision of a specialist to define the region 
of interest
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Figure 1: Proposed framework for radiomics analysis on computed tomography images for predicting chemoradiation‑induced heart failure by machine 
learning models
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reduce computational complexity by prioritizing the most 
informative features. Ultimately, it improves the accuracy 
of the model.[29]

Classification

In our study, we utilized Python 3.7 and PyCharm 2019.3.1 
to implement DT, K‑Nearest Neighbor (KNN), and RF ML 
algorithms to analyze the correlations between radiomic, 
dosimetric, and clinical features with heart damage.[27]

Choosing multiple different algorithms such as DT, KNN, 
and RF allows us to have greater diversity in modeling and 
benefit from the advantages of each. We can use their results 
to compare prediction accuracy and select the best model. 
DT model provides a clear, interpretable model structure, 
making it easier for clinicians to understand decision‑making 
processes. The KNN algorithm uses a learning method based 
on the nearest neighbors of each query point, with the number 
of neighbors set to five in this investigation. RF, recognized 
as one of the most commonly used ML techniques, serves 
as a meta‑estimator that trains multiple DT classifiers 
on different subsets of the dataset and uses averaging to 
enhance predictive accuracy and manage overfitting. The 
test size for this study was set to 0.2. In our experiments, 
we trained the algorithms using 5‑fold cross‑validation. 
During cross‑validation, the data are repeatedly divided, and 
several models are trained rather than splitting the dataset 
into separate training and test sets. This approach provides 
insight into our model’s best and worst‑case performance 
when applied to new data. We used four evaluation criteria 
for comparison: accuracy, sensitivity, specificity, and the area 
under the curve  (AUC). Accuracy represents the percentage 
of total correct predictions relative to the total samples, 
whereas sensitivity measures the model’s ability to identify 
true positive samples, and specificity indicates the model’s 
ability to identify true negative samples. AUC is a useful 
measure to evaluate the performance of a binary classifier 
at different threshold values, which reflects the ability of 
the model to discriminate between classes, regardless of 
the class distribution. By considering these parameters, we 
can gain a better understanding of the model’s performance 
under different conditions and identify its strengths and 
weaknesses, which is crucial for clinical decision‑making or 
other applications.

Datasets

We categorize the features into three categories  (radiomic, 
clinical, and dosimetric). The clinical features included 
age, type of chemotherapy drugs, blood pressure, and 
body mass index, whereas dosimetric features consisted 
of the total dose, dose per fraction, number of fractions, 
V5, V10, and V25. We tested different data combinations 
in the models and implemented them accordingly. The 
integration of these features was based on empirical 
results and theoretical considerations. Radiomic features, 
extracted from medical images, provided detailed insights 

into tissue characteristics. Clinical features, such as patient 
age, were considered for that potential impact on heart 
failure outcomes, whereas dosimetric features related to 
radiation exposure were included to capture the effects 
of radiation therapy. Initially, we analyzed each feature 
category separately and then combined them to assess 
their contributions to model performance. Combining all 
datasets as input to the model yields better results and, 
in this case, the patient’s age and numerous radiomic 
features emerged as important. Therefore, we ran the 3 
ML algorithms with four datasets to confirm this result. 
The first dataset included radiomic and clinical features; 
the second dataset included only radiomic features. The 
third dataset combined radiomic features and patient age 
as the only important nonradiomic feature. The last dataset 
included the top 10 selected features, combining radiomic, 
clinical, and dosimetric features. The flow chart of this 
study is provided in Figure 1.

Results
Based on the EF from echocardiography, 25 of the patients 
(46%) experienced heart failure.

The segmented area yielded 873 radiomic features, of 
which 17 were selected. The RF algorithm using the 
dataset combining radiomic features and patient age, and 
the DT algorithm using the dataset combining radiomic, 
clinical, and dosimetric features, provided the best 
predictions for heart failure (AUC = 0.98 and AUC = 0.92, 
respectively) [Table 3].

Important features for predicting chemoradiation‑induced 
heart failure using the RF classifier, derived from the 

Figure 3: Important features for prediction of chemoradiation‑induced heart 
failure in random Forest classifier resulting from the first dataset (radiomic 
and clinical features combination)
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first and third datasets  (radiomic and clinical feature 
combinations), are shown in Figures 3 and 4.

Essential features for predicting chemoradiation‑induced 
heart failure using the RF classifier from the fourth 
dataset  (10 selected radiomic features combined with 
selected clinical and dosimetric features) are shown in 
Table 4.

Overall, the RF classifier outperformed the DT and KNN 
classifiers based on high AUC values, accuracy, sensitivity, 
and specificity, with an average AUC of 0.94. RF classifier 
identified 15 essential features from the radiomic features 
and age dataset. A  comparison of the three classifiers was 
conducted based on the AUC of the receiver operating 
characteristic curves, which plot the model’s features 

against sensitivity and are created by adjusting classification 
thresholds [Figure 5].

Discussion and Conclusion
This research investigated three ML algorithms to 
predict heart failure in breast cancer patients using 
their medical imaging, clinical, and dosimetric data. 
Our main objective was to present predictive models 
that can identify breast cancer patients at high risk of 
developing heart problems due to cancer treatments, with 
the goal of preventing or minimizing the occurrence of 
such issues. Prior research has utilized ML techniques 
to predict heart failure in general patient populations 
without explicitly targeting any particular treatment or 

Table 3: Results of machine learning models performances in predicting chemoradiation‑induced heart failure
Models Datasets Accuracy Sensitivity Specificity AUC
RF 17 radiomic features + clinical features 0.85 0.83 0.85 0.90

Only 17 selected radiomic features 0.85 0.83 0.85 0.92
15 selected radiomic features + patient age 0.85 0.83 0.85 0.98
10 selected radiomic features + selected clinical and dosimetry features 0.85 0.83 0.85 0.96

DT 17 radiomic features + clinical features 0.85 0.83 0.85 0.92
Only 17 selected radiomic features 0.85 0.83 0.85 0.88
15 selected radiomic features + patient age 0.85 0.83 0.85 0.89
10 selected radiomic features + selected clinical and dosimetry features 0.85 0.83 0.85 0.96

KNN 17 radiomic features + clinical features 0.67 0.57 0.75 0.64
Only 17 selected radiomic features 0.67 0.57 0.75 0.64
15 selected radiomic features + patient age 0.67 0.57 0.75 0.64
10 selected radiomic features + selected clinical and dosimetry features 0.70 0.80 0.60 0.76

Plus (+) means combination. AUC – Area under the curve; DT – Decision tree; KNNs – K nearest neighbors; RF – Random forest

Figure 4: Important features for prediction of chemoradiation‑induced heart 
failure in random forest classifier resulting from the third dataset (radiomic 
features and patient age combination)

Figure  5: Majoring performance in three classifiers based on datasets 
identified by the area under the receiver operating characteristic curve. 
The random forest is shown in orange, K‑nearest neighbors in blue, and 
the decision tree in green. ROC – Receiver operating characteristic
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disease.[30‑32] However, none of these methods have been 
able to predict radiation‑induced heart problems based on 
medical imaging. Our study demonstrated the potential 
of using ML approaches to predict heart failure in 
breast cancer patients by analyzing CT scan images and 
LVEFs. The advantage of cohort studies like ours is that 
they reduce the effect of inherent parameters and latent 
variable effects, thereby enabling relatively high accuracy 
in predicting complications.

From the first dataset in our study, Short Run High Gray 
Level Emphasis 735 was identified as the most important 
feature. Other essential radiomic features related to cardiac 
damage included Small Dependence Low Gray Level 
Emphasis, Run Length Non Uniformity, and Joint Energy. 
The best performance for this dataset was achieved by the 
DT algorithm, with an AUC of 0.90. To comparison of 
the results, we used a second dataset that included only 
radiomic features. We had expected that combining clinical 
features with radiomic data would improve the performance 
of diagnostic models. However, the results showed that the 
models produced similar outputs in both cases. Combining 
all the data in the modeling showed us that, except for age, 
none of the clinical characteristics were among the most 
important characteristics identified by the models. Other 
studies also confirm that age is a critical predictor, with 
studies indicating that older patients are at a higher risk for 
complications postradiation therapy.[33,34] To confirm this 
result, we re‑ran the models with a third dataset, which 
included radiomic features and the age column, excluding 
other dosimetric and clinical features. The model outputs 
were the same as when the combination of radiomic and 
clinical features was applied. These results indicate that 
clinical features do not play a significant role in improving 
the accuracy of our prediction models. This could be due to 
the high influence of features derived from medical images 
that are directly related to pathological features. Therefore, 
necessary information for heart failure classification and 

prediction is likely to be found in radiomic features. How 
clinical and dosimetric characteristics influence predictive 
models led to the creation of the fourth dataset. For this 
purpose, first, clinical and dosimetric characteristics were 
presented to the models and six critical characteristics 
were identified. Then, these features were combined with 
ten radiomic features that were recognized as essential 
by the models, and this combined dataset, known as the 
fourth dataset, was used to compare the results. Based 
on the obtained results, the V5  (%) feature was identified 
as the most crucial feature. This finding aligns with 
other studies that have recognized V5 as a marker of 
heart muscle damage, which can serve as a predictor for 
patients receiving radiation therapy for left‑sided breast 
cancer and lung cancer.[35] In radiation biology, the heart 
is considered an organ with both serial and parallel array 
substructures.[36] This classification is based on the volume 
effect and organization of various tissues and cells within 
the heart that can be affected by radiation. In parallel organs, 
the percentage volume receiving radiation such as V5 is a 
critical parameter. Knowing this can help in assessing risks 
and protective measures in radiation exposure scenarios. In 
our study, in addition to emphasizing the parallel aspect of 
the heart, it was shown that the V5 metric, which represents 
the volume of the heart receiving at least 5 Gy of radiation, 
can effectively predict cardiac disease. In another study, 
a V5 threshold  ≥49% was associated with a significantly 
higher risk of Grade 3 cardiac complications.[37]

To optimize the performance of the three ranking 
algorithms (KNN, RF, and DT), we employed four distinct 
evaluation criteria: accuracy, sensitivity, specificity, and 
AUC. Accuracy indicates how effectively a test can 
differentiate between cardiac complications and normal 
cases. To assess a test’s accuracy, it is essential to calculate 
the true positive rate and true negative rate for all cases 
under evaluation. Based on accuracy, both DT and RF 
models outperformed the KNNs algorithm, achieving 
respective accuracy rates of 0.85 and 0.67. The AUC values 
for DT and RF are significant indicators of their predictive 
performance. Given that all AUC values are >0.5, it can be 
inferred that these models are effective predictors. Notably, 
RF exhibits an AUC value that is closer to 1, indicating 
that it is the superior predictor among the evaluated 
models. The DT model achieved the highest accuracy when 
using both clinical and radiomic datasets, whereas the RF 
model performed best when using only radiomic datasets. 
Patients’ ages were among the best predictors for heart 
failure, with AUC values of 0.92 and 0.98, respectively. 
The analysis of the extracted features revealed that in the 
third dataset, which includes radiomic features and patients’ 
ages, the Gray Level Co‑occurrence Matrix class contains 
important features. This class examines the statistical 
relationships between pairs of pixels with different gray 
levels at a specific distance, providing information about 
the diversity and homogeneity of tissues in the image. The 

Table 4: Important features for prediction of 
chemoradiation‑induced heart failure in random forest 
classifier resulting from the fourth dataset (10 selected 
radiomic features and selected clinical and dosimetric 

features combination)
Important features Importance 

value
1 V5 (%) 0.628021
2 GrayLevelNonUniformityNormalized443 0.186887
3 LargeDependenceHighGrayLevelEmphasis343 0.179115
4 Mean 0.1719
5 ShortRunHighGrayLevelEmphasis549 0.15135
6 V10 (%) 0.141213
7 ZonePercentage658 0.118181
8 RunLengthNonUniformityNormalized452 0.097925
9 Contrast663 0.083257
10 HighGrayLevelEmphasis341 0.0673
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next important class is the Gray Level Dependence Matrix, 
which quantifies gray‑level dependencies in the image. 
The number of voxels connected at a specific distance  (δ) 
and dependent on the central voxel is called gray‑level 
dependence. The Gray Level Run Length Matrix (GLRLM) 
quantifies the lengths of consecutive runs of gray levels, 
indicating the number of successive pixels with the same 
gray levels. The Gray Level Size Zone Matrix identifies 
regions with different gray levels and provides an advanced 
statistical matrix for describing tissues. This order also 
holds for the second dataset, which includes only radiomic 
features. For the first dataset, which consists of all radiomic 
and clinical features, GLRLM is the essential feature.

The analysis of the extracted features from different 
algorithms shows that some common features consistently 
contribute to the predictive power of the models. In the 
combination of clinical and radiomic features, both DT and 
RF models identify Short Run High Gray Level Emphasis 
as an essential feature with an AUC of 0.97. This feature 
captures short runs with high intensity in the image, 
potentially indicating small and bright areas associated 
with pathological changes. When we focused solely on 
radiomic features, the RF models performed better and 
highlighted Gray Level Non‑uniformity Normalized 443 
as the key feature. This feature measures the variability in 
gray level intensity values normalized by the total number 
of gray level values, indicating the uniformity of intensity 
distribution within an image; for the third dataset, which 
combined radiomic features and age, both the DT and RF 
models identified Short Run High Gray Level Emphasis 
as an important feature. This feature helps classify 
high‑intensity short runs in the image, potentially indicating 
small and bright areas associated with pathological changes.

The superior performance of the RF and DT models can be 
attributed to their tree‑like structure, including decision and 
leaf nodes. This structure involves a series of consecutive 
choices to achieve a specific outcome. The element of 
randomness introduces diversity among individual trees, 
reducing the risk of overfitting and enhancing overall 
predictive performance. Consequently, these tree‑learning 
methods have become influential in ML. Over the years, 
numerous studies have focused on radiomic models 
in RT due to their ability to offer personalized patient 
treatment by providing quantitative descriptions of medical 
images.[7] In addition, several studies have applied radiomics 
in diagnosing and prognosing heart failure.[8‑10] For example, 
Parmar et  al.[38] conducted a similar study and found that 
identifying the best ML algorithm for analyzing predictive 
radiomic features could expand the field of radiomics in 
oncology and cancer treatment.[12] Another study found 
that CT features could distinguish sensory‑neural hearing 
loss in head‑and‑neck tumors, achieving an accuracy 
of more than 0.70 using ten ML methods.[39] Moreover, 
Zhou et al. outlined risk assessments based on ML, which 
included patients’ ages, hypertension, glucose levels, 

LVEF, creatinine, and aspartate aminotransferase levels for 
detecting cancer treatment‑related CTRCD.[40]

The study’s limitations included a relatively small number 
of patients and the need to more follow‑up for myocardial 
function evaluation. Small patient sample sizes may affect 
the generalizability of our findings to other populations or 
situations, and the findings may not accurately represent 
the behaviors and characteristics of the entire population. 
Short‑term follow‑up was also required for better prediction 
in times before 3  years. In addition, although we used 
the Framingham risk score test to exclude background 
individual cardiovascular risk factors, it is recommended 
that future studies employ multivariate prediction models 
to assess all risks of heart failure.

In conclusion, our understanding of the mechanisms 
underlying cancer therapy‑induced cardiotoxicity is 
limited. This research serves as an initial step in evaluating 
ML models for predicting heart failure in this patient 
population.
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