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Abstract
Background: Functional near‑infrared spectroscopy  (fNIRS) is a valuable neuroimaging tool 
that captures cerebral hemodynamic during various brain tasks. However, fNIRS data usually 
suffer physiological artifacts. As a matter of fact, these physiological artifacts are rich in valuable 
physiological information. Methods: Leveraging this, our study presents a novel algorithm for 
extracting heart and respiratory rates  (RRs) from fNIRS signals using a nonstationary, nonlinear 
filtering approach called cumulative curve fitting approximation. To enhance the accuracy of 
heart peak localization, a novel real‑time method based on polynomial fitting was implemented, 
addressing the limitations of the 10  Hz temporal resolution in fNIRS. Simultaneous recordings 
of fNIRS, electrocardiogram  (ECG), and respiration using a chest band strain gauge sensor 
were obtained from 15 subjects during a respiration task. Two‑thirds of the subjects’ data 
were used for the training procedure, employing a 5‑fold cross‑validation approach, while the 
remaining subjects were completely unseen and reserved for final testing. Results: The results 
demonstrated a strong correlation  (r  >  0.92, Bland–Altman Ratio  <6%) between heart rate 
variability derived from fNIRS and ECG signals. Moreover, the low mean absolute error  (0.18 
s) in estimating the respiration period emphasizes the feasibility of the proposed method for RR 
estimation from fNIRS data. In addition, paired t‑tests showed no significant difference between 
respiration rates estimated from the fNIRS‑based measurements and those from the respiration 
sensor for each subject  (P  >  0.05). Conclusion: This study highlights fNIRS as a powerful 
tool for noninvasive extraction of heart and RRs alongside brain signals. The findings pave the 
way for developing lightweight, cost‑effective wearable devices that can simultaneously monitor 
hemodynamic, heart, and respiratory activity, enhancing comfort and portability for health 
monitoring applications.
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Introduction
Functional near-infrared spectroscopy 
(fNIRS) has emerged as a valuable 
tool for examining changes in cerebral 
hemodynamics and oxygen saturation 
levels both during specific brain tasks and 
at rest.[1] Over the past 30 years, fNIRS has 
provided insights into the hemodynamic 
reactions associated with cognitive, visual, 
and motor activities, while also evaluating 
brain functional connectivity.[2‑4] NIRS 
measurements rely on detecting red and 
near‑infrared light as it traverses through 
perfused tissue. This light is administered 

through the skin, and the scattered light is 
gathered at a specified distance from the 
emitting source. The separation between 
the emitter and collector  (or detector) 
dictates the route taken by the collected 
light. For the light to penetrate the cerebral 
vasculature effectively, the distance 
between the emitter and collector should 
exceed 2.5  cm in adults.[5] In comparison 
to other neuroimaging techniques such 
as electroencephalography  (EEG) 
and functional magnetic resonance 
imaging (fMRI), fNIRS offers superior 
spatial and temporal resolutions, 
respectively.[6] Consequently, fNIRS has 
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been widely utilized in a variety of studies spanning 
different cognitive tasks and clinical settings.[7]

The hemodynamic signal exhibits two types of artifacts: 
physiological artifacts such as heartbeat, Mayer[8] and 
respiration, and nonphysiological interferences such as 
motion artifacts[9] and electrical noises. Various algorithms, 
including wavelet analysis,[10] conventional[11] or adaptive 
filtering,[12] Kalman filtering,[13] independent component 
analysis[14] and deep learning,[15] are capable of attenuating 
physiological artifacts and other sources of noise. Among 
these, the artifacts originating from heartbeats and 
respiration can be extracted from fNIRS signals. These 
signals can then be effectively leveraged for heart rate (HR) 
and respiratory rate  (RR) analysis, offering additional 
valuable insights. Consequently, utilizing a single portable 
device enables the extraction of three distinct signals 
containing crucial functional information from the brain, 
heart, and respiration.

HR variability  (HRV) parameters quantify the variation 
in time intervals between successive cardiac cycles. 
This metric has been established as a valuable tool for 
characterizing and comprehending the regulation of 
the cardiovascular system by the autonomic nervous 
system  (ANS).[16] The gold standard for HR tracking, 
involves analyzing the interbeat intervals  (IBIs) identified 
through an electrocardiogram  (ECG) signal.[17] Numerous 
studies have aimed to measure HR and HRV using fNIRS 
signals. For instance, Hakimi and Setarehdan[18] employed 
a band pass filter to isolate the heart signal from fNIRS 
data and utilized peak detection algorithms for real‑time 
extraction of IBIs and HRV.

Respiration serves as the largest oscillator in the body, 
intricately involved in regulating physiological processes 
in response to environmental demands and ensuring the 
maintenance of homeostasis.[19] Respiratory activation 
serves as an indicator not only of metabolic alterations 
but also of psychological and behavioral processes.[20] 
Research on extracting RR from fNIRS signals remains 
relatively sparse, with the predominant apparatus used for 
RR extraction being respiratory inductive plethysmography, 
strain gauge, and spirometry. However, in a recent study, 
Hakimi et  al.[21] introduced novel techniques to extract 
respiration rate from fNIRS data. They utilized a band 
pass filter  (0.05  Hz to 2  Hz) to isolate the respiratory 
signal and extracted baseline wander from troughs of the 
filtered signal. The peak of the frequency spectrum was 
then used to determine RR. This approach represents a 
promising advancement in the field, offering new insights 
into respiratory dynamics through fNIRS technology.

In fNIRS signals, noticeable drifts are frequently 
observed.[22] Wide sense stationarity requires the first 
two statistical moments to remain constant over time. 
Consequently, signals exhibiting drift are automatically 
categorized as nonstationary. In addition, components 

stemming from neuronal hemodynamic responses 
demonstrate a time‑varying second statistical moment. 
Various tools such as bandpass filtering  (BPF), LPF,[23] 
and DCT[24] have traditionally been utilized for extracting 
the hemodynamic response signal. However, recent 
advancements by Patashov et  al.[22,25] introduced and 
applied cumulative curve fitting approximation  (CCFA), 
a nonstationary and nonlinear filter. This filter helps 
mitigate distortion effects arising from the nonstationarity 
of fNIRS data. While previous studies have utilized CCFA 
for extracting the hemodynamic response signal with 
favorable outcomes, its application for filtering fNIRS 
signals to extract physiological artifacts such as HR and 
respiration‑related signals has not been explored before.

Estimating joint heart and RRs, as well as extracting 
HRV from fNIRS signals, is crucial for advancing 
comprehensive physiological monitoring. The simultaneous 
assessment of cerebral activity, HR, and respiration using 
a single sensor enables perfectly time‑synchronized 
evaluations of  (cerebral) physiology, providing a more 
holistic understanding of the body’s responses.[26] 
Furthermore, research has demonstrated that incorporating 
cardiac and respiratory features extracted from fNIRS 
data can enhance the accuracy of mental workload 
classification, illustrating the broader potential of fNIRS 
for multiparameter monitoring.[27] However, the extraction 
of HR and respiration‑related signals from fNIRS has been 
underexplored, particularly in addressing nonstationarity. 
To fill this gap, we aimed to assess the effectiveness of the 
CCFA technique in extracting heart and RRs from fNIRS 
signals, providing a novel approach to handle the inherent 
drift and distortion in the data. It is hoped that the results 
of this research will aid in the creation of a device with 
lower power consumption, reduced weight, volume, and 
cost, making it both efficient and highly suitable for use 
in portable and wearable physiological monitoring systems.

Materials and Methods
Participants

The experiments in this study have an ethics code of 
IR.UT.SPORT.REC.1402.102 from the research ethics 
committees of the University of Tehran, faculty of sport 
sciences and health. Data acquisition includes concurrent 
recordings of fNIRS, ECG, and respiratory signals were 
obtained from a group of 15 healthy adult males and 
females with an average age of 27  (±3.1) years. Before 
participation, participants self‑reported no history of heart, 
respiratory, or neurological diseases, and confirmed that 
they were not taking any medication that could affect the 
outcomes of the study. All participants were fully informed 
about the experiment and provided written consent before 
the commencement of the study. Data from two‑thirds 
of the subjects were utilized for training and parameter 
tuning through a 5‑fold cross‑validation process, while 
the data from the remaining five subjects remained unseen 
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throughout the entire procedure and were designated as the 
test dataset for evaluating the final results.

Data acquisition protocol

In this study, the Oxymap124 fNIRS system of the NIR 
laboratory of the University of Tehran was employed for 
data acquisition.[28] This system uses light sources emitting 
at wavelengths of 730  nm and 850  nm. A  sampling rate 
of 10  Hz was set for data recording. Only one fNIRS 
channel positioned at the midline  (Fpz) on the 10–20 
system with an inter source‑detector distance of 25  mm 
was utilized  [Figure  1a]. The ECG signal from standard 
lead I was recorded simultaneously using three electrodes 
positioned at the sites right arm, left arm, and right 
leg  [Figure  1b], utilizing the AD8232 biopotential sensor. 
The sampling rate for the ECG signals was set to 660 Hz, 
which is more than sufficient to capture the primary 
frequency range of ECG  (0.5–40  Hz), ensuring precise 
detection of HRV and other cardiac features. Respiratory 
signals were concurrently recorded using a chest‑band 
strain gauge at a sampling rate of 6.6  Hz, which is 
adequate for capturing the slower frequency components 
of respiration  (typically between 0.1  Hz and 0.5  Hz). For 
every 100  samples of ECG, 1  sample of respiration was 
collected, ensuring synchronized data acquisition with 
appropriate resolution for both signals.

Task

Before commencing the experiment, participants 
were provided with a detailed briefing regarding the 
experimental procedure. They were instructed on how to 

perform the tasks involved in the study, ensuring that they 
understood the requirements and protocols to be followed. 
The data recording protocol for RR estimation, adapted 
from references[21,29] is depicted in Figure  2. The protocol 
comprised one block of a resting period lasting for 60 s (A), 
succeeded by two blocks of breathing control tasks  (B and 
D), with a 30 s rest period in between (C). Following this, 
the same sequence of blocks was repeated. The participants 
were instructed to maintain a steady pace of inhalation and 
exhalation at specified rates while observing a vertical (bar 
chart as a graphical shape) moving synchronously with 
text indicating the respective inhale and exhale phases 
displayed on the screen. Each block of the breathing control 
task comprised 5 steps, with a consistent respiration rate 
maintained over a duration of 50 s. In general, respiration 
was performed at intervals of 3.5, 4.75, 6, 7.25, and 8.5 s, 
each repeated four times.

Processing

Cumulative curve fitting approximation

In this work, the CCFA technique is used for signal 
processing. CCFA utilizes a sliding window of 𝑘𝑜𝑟𝑑 size, 
incorporating ordk points to fit curves to the input signal. 
The resulting filtered output is derived from the average 
extension of these curves at designated points. The 
reconstructed signal, denoted as ( )Sig n , is obtained using 
Eq. 1.[22]

( )
( ) ( ) ( )+1 +2‑1 + ‑ 2 +…+ 0

= ord ordn‑k ord n‑k ord n

ord

P k P k P
Sig n

k
 

� (1)

Here, n = 1, 2,…, L  denotes the index of the sample being 
corrected. In addition, ( )qP j denotes the polynomial curve 
fitting function calculated using the samples within a window 
size of length (i. e.,[ 1, 2, ])...,ord ord ordk   q ‑ k  +  q ‑ k  +  q .

To further clarify, in this equation, ( )1 1
ordn‑k + ordP k −  

refers to a polynomial fitted using samples from 
[ ]2 2 1ord ordn ‑ k +  : n ‑ k + . This polynomial is then 
extrapolated up to 1ordk − points, specifically at the location 
of sample n, and its value is then used in the equation. In 
addition, in Eq. 1, other polynomials are computed based on 
their respective windows of samples, and each polynomial 

= 1ord P is similarly extended until it precisely reaches the 
position of sample n, where their values are incorporated 
into the equation. For this process, a linear, first‑degree 
polynomial is employed as the curve fitting function. An 
illustration showcasing the computation of CCFA for time 

6n = , utilizing  = 3ord and a linear polynomial function 
for fitting, is presented in Figure 3.

Functional near‑infrared spectroscopy filtering procedure

The main processing diagram, depicted in Figure 4, outlines 
the signal processing steps. Initially, the optical signal 
obtained at 850  nm as a time signal x  (t), is subjected 
for processing using the CCFA method with a window 

Figure 1: Electrode placement for physiological measurements. (a) Functional 
near‑infrared spectroscopy source‑detector locations,  (b) Placement of 
electrocardiogram electrodes and respiration sensors

b

a



Adib, et al.: Enhanced HR and RR estimation from fNIRS signals using CCFA

4� Journal of Medical Signals & Sensors | Volume 15 | Issue 5 | May 2025

size of 2.5 s. The selection of the 850  nm wavelength 
over 730 nm was motivated by its sensitivity to fluctuations 
in heart activity and superior signal‑to‑noise ratio. This 
processing step effectively removes higher‑order frequency 
contamination, resulting in z1(t), which primarily contains 
information related to drift and respiration, while the heart 
component is not present. Simultaneously, the raw fNIRS 
signal undergoes separate processing using CCFA with 
a larger window size of 7 s. This processing step aims to 
cancel out the respiratory component and higher frequency 
contaminations, leaving information primarily associated 
with drift and brain‑related activity, obtained as z2(t). 
Subsequently, the heart component is isolated by subtracting 
x  (t) from z1(t). This subtraction obtained as y1(t), isolates 
the heart‑related signals, which are then suitable for further 
analysis using peak detection algorithms to derive HR 
and HRV metrics. In addition, the respiratory component 
is isolated by subtracting z1(t) from z2(t). This subtraction 
obtained as y2(t), results in the extraction of signals 
specifically related to respiration, which are then ready for 
further analysis to extract respiration rate information.

The FFT of y1(t) and y2(t) is also displayed in Figure  4. 
It illustrates that in y1(t), the frequency component of the 

heart‑related signal is extracted, while other frequencies 
are cancelled out. Similarly, in y2(t), the FFT demonstrates 
that the respiration component is extracted, while other 
frequencies such as the heart signal or lower frequencies 
like drift are effectively cancelled.

The initial 10 s of y1(t), encompassing heart‑related 
components, were employed for signal quality assessment. 
Similar to the methodology described in article,[30] the 
scalp coupling index  (SCI) is computed. Favorable skin 
contact between the optodes and the scalp usually leads to 
a noticeable variation correlating with cardiac pulsation, 
which predominates in the raw data.[31] The SCI for each 
subject’s single channel is determined as the correlation 
between the signals of the two wavelengths. Channels 
deemed to have poor signal quality were excluded based on 
the SCI assessment.

Peak detection

In the next step, it is necessary to accurately localize the peaks 
related to the heart and respiration signals from y1(t) and y2(t), 
respectively. To achieve this, a simple window‑based technique 
is employed, wherein a peak is detected if the middle point 
of the window exhibits a maximum value compared to its 
surrounding points. The selection of the window size is crucial 
and is determined based on the sampling frequency and the 
nature of the target signal  (heart or respiration). This careful 
selection helps prevent the detection of erroneous local maxima 
and ensures that correct maximum peaks are not missed. 
Given the limited temporal resolution of samples and peaks 
of the heart due to the 10  Hz sampling frequency of fNIRS, 
which corresponds to a temporal resolution of 0.1 s, alternative 
methods are employed to enhance precision. Although 
resampling techniques such as those utilized in article,[32,33] 
which employed the RESAMPLE function of MATLAB to 
up‑sample data from 10  Hz to 100  Hz, could be considered, 
new real‑time algorithm for correcting peak locations, based on 
polynomial fitting, is applied. In this method, a second‑order 
polynomial function is fitted for each detected peak, spanning 
across the detected peak and its adjacent left and right samples. 
Subsequently, the maximum of this polynomial function is 
computed and considered as the final peak, thus ensuring 

Figure 2: The breathing task protocol. It consists of a 60‑s resting period (A) 
followed by two 250‑s breathing control tasks (B, D), separated by a 30‑s 
rest (C). The same blocks were repeated again

Figure 3: Illustration of cumulative curve fitting approximation calculation 
for time n = 6 with k_ord = 3
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improved accuracy in peak localization despite the limitations 
in temporal resolution. The main steps of peak detection are 
summarized in Algorithm 1 as follows:

Algorithm 1: Localization of filtered fNIRS signal peaks

After the extraction of the heart beat and respiration 
signals, both HR and RR are measured by calculating 
the time interval between two adjacent peaks in their 
respective signals. For HR, the time interval between 
successive peaks in the heart beat signal represents the IBI, 
which is used to determine HR in beats per minute (BPM). 
Similarly, for RR, the time interval between consecutive 
peaks in the respiration signal represents the respiration 
period, which is used to determine RR in breaths per 
minute  (BPM). By quantifying these time intervals, HR 
and RR can be accurately assessed, providing essential 
physiological information for various applications in health 
care and research. In addition to HR and RR, HRV is also 

calculated. HRV refers to the variation in the time interval 
between successive heartbeats and is an important indicator 
of ANS activity and cardiovascular health. The peak 
detection algorithm described in Algorithm 1 is utilized to 
identify peaks in both the respiration sensor data obtained 
from the strain gauge and the ECG signal. Before applying 
this algorithm to the respiration data, a smoothing process 
is performed using the SMOOTH function in MATLAB 
with a window length of 3s.

Results
Channel quality assessment

The SCI was computed for each single channel of all 
participants, and all channels were deemed acceptable 
as their SCI values exceeded the recommended threshold 
of 0.8.[31] Therefore, no data were excluded from further 
processing.

Optimizing cumulative curve fitting approximation 
window sizes

Considering the fact that CCFA had not been previously 
utilized for fNIRS data filtering in order to extract heart 
and respiration related components, determining the 
optimal window sizes for short and long wave‑patterns is 
a challenging issue. To address this, A series of filtrations 
was conducted using various window sizes. Specifically, a 
range of window sizes from 1 to 3.5 s, with increments of 
0.5 s, was explored on the training dataset, utilizing 5‑fold 
cross‑validation. By employing the power spectral density 
ratio (PSDR) as defined in Eq. 2, the objective was to identify 
a window size that effectively eliminated heart‑related 
components while preserving those related to respiration. 
The goal was to minimize the PSDR of z1(t), indicating 

Figure 4: The main block diagram of proposed method. fNIRS: Functional near‑infrared spectroscopy, CCFA: Cumulative curve fitting approximation
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successful removal of heart‑related signals while retaining 
the respiration‑related signals. As shown in Figure 5, results 
of the cross‑validation indicate that the majority of cases 
achieved optimal performance with a window size of 2.5 s.

2.5

1
0.5

0.1

(t))

(t))

1

1

PSD(z
PSDR = 

PSD(z

∫
∫

� (2)

Subsequently, having identified the appropriate window 
size for the initial CCFA  (with a smaller window size), we 
proceeded to apply the next CCFA with a window size range 
of 4–9 s, employing a 1‑s step. Here, the correlation of the 
output with the signal of respiration strain gauge sensor 
was utilized as a selection criterion. This comprehensive 
approach enabled us to systematically determine the optimal 
window sizes for CCFA filtration, ensuring robust extraction 
of heart and respiration related components from fNIRS 
data. At the end of this process, the optimum window size 
calculated on our train dataset was found to be 7 s.

Optimizing the peak detection window size

To refine the optimal window size for the peak detection 
algorithm, the training dataset is used. The critical success 
index defined in Eq. 3 was employed as the peak detection 
criterion,[21] resulting in the determination of the optimal 
window size  (N). Here 𝑇𝑃, 𝐹𝑁 and 𝐹𝑃 stand for correctly, 
missed and wrongly detected peaks. As indicated by the results 
in Figure 6 from the training dataset, the optimal window size 
for heartbeat detection was determined to be 0.35 s, whereas 
for respiration detection, it was found to be 1.4 s.

P

P N P

TCSI = 
T + F + F

	 (3)

Result of applying respiratory rate estimation 
algorithm to in vivo measured functional near‑infrared 
spectroscopy signal

Figure  7  (top) shows the fNIRS signal alongside the filtered 
fNIRS signal using a conventional Butterworth bandpass filter 
with cutoff frequencies of 1–1.9 Hz, similar to the method in 
article.[18] as well as the filtered fNIRS signal obtained using 
the proposed CCFA method, with their respective peaks. In 
addition, the ECG signal is displayed. The lower section 
presents the HRV derived from the proposed algorithm and 
conventional BPF, superimposed with the HRV signal derived 
from the ECG as the reference HRV.

To objectively assess the performance of the algorithms 
employed for HR derivation from the fNIRS signal, several 
quantitative metrics were calculated. These metrics include:
1.	 Mean error: The average difference between the HR 

derived from fNIRS (HR from fNIRS) and the reference 
HR obtained from ECG (HR from ECG)

2.	 Maximum error: The maximum absolute difference 
between HR from fNIRS and HR from ECG

3.	 Spearman linear correlation between HR from fNIRS 
and HR from ECG

Figure 5: Tuning the initial (small) window size in the proposed method using the training dataset with 5‑fold cross‑validation. The power spectral density 
ratio criteria were evaluated for different cumulative curve fitting approximation (CCFA) window sizes ranging from 1 s to 3.5 s, with increments of 0.5 
s. Rather than concentrating only on fold 3, results from the other folds suggest that a window size of 2.5 s is suitable for the CCFA. CCFA: Cumulative 
curve fitting approximation, PSDR: Power spectral density ratio

Figure  6: Critical success index criteria evaluated over different peak 
detection window sizes. For heartbeat detection, the window sizes were 
set between 0.2 and 0.45 s, with increments of 0.05 s, while for respiration 
detection, the window sizes ranged from 0.6 to 1.8 s, with increments of 0.2 
s. The results from the training dataset show that the highest criteria were 
achieved at 0.35 s for heart detection and 1.4 s for respiration detection. 
CSI: Critical success index
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4.	 The BAR is defined as the ratio of half the range of the 
limits of agreement–representing the interval within 
which approximately 95% of the differences between two 
measurement methods are expected to fall–to the mean of 
the paired measurements. This relationship is expressed in 
Eq. 4:

1 2
1 2

1 2

1.96 sd(x ‑ x )BAR = x ,x : data of two methods
x + xmean( )

2
	 (4)

These metrics serve as standardized measures to assess 
the agreement between HR measurements derived from 
the fNIRS or photo‑plethysmography and the ECG 
signal.[17,18] The results indicate that the proposed algorithm 
demonstrates a strong Spearman linear correlation of 
92.11 ± 0.81% between HRV extracted from fNIRS and ECG 
on the test dataset  (unseen subjects). In addition, the BAR 
is below 6, signifying a good level of agreement [Table 1]. 
The results highlight the superiority of the CCFA method 
over the BPF approach in all evaluated criteria for HRV 
extraction. Specifically, the proposed method outperforms 
BPF due to its use of nonstationary filtering, which ensures 
that peak locations remain undistorted, a crucial factor for 
reliable HRV signal extraction and a significant advantage 
over traditional filtering techniques.

Result of applying respiratory rate estimation 
algorithm to in  vivo measured functional near‑infrared 
spectroscopy signal

Figure  8 illustrates an example of the raw optical fNIRS 
signal alongside its corresponding filtered signal using 
the CCFA method, with identified peaks. Additionally, the 

Figure 7: Comparison of heart rate variability (HRV) signals derived from functional near‑infrared spectroscopy (fNIRS) and electrocardiogram (ECG) 
Top‑Raw optical fNIRS signal, fNIRS filtered with bandpass filter (BPF), fNIRS processed with the proposed cumulative curve fitting approximation (CCFA) 
method, and reference ECG signal. Bottom‑HRV signals derived from BPF, CCFA, and reference ECG. IBI: Inter beat interval, HRV: Heart rate variability, 
fNIRS: Functional near‑infrared spectroscopy, BPF: Bandpass filter, CCFA: Cumulative curve fitting approximation

Figure 8: Comparison of functional near‑infrared spectroscopy  (fNIRS), 
filtered fNIRS with cumulative curve fitting approximation and respiration 
sensor signals during respiration task. CCFA: Cumulative curve fitting 
approximation, fNIRS: Functional near‑infrared spectroscopy
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respiration signal from the strain gauge sensor, serving 
as a reference, is overlaid with its respective peaks from 
participant 1 during the respiration task. It is noteworthy 
that this is the first instance, to the best of our knowledge, 
where respiration  (baseline‑wander‑related signal) is 
extracted directly from the optical signal rather than from 
HbO2 concentration, without utilizing the Modified Beer–
Lambert Law.

The respiration task involves five respiration periods 
ranging from fast respiration with a period of 3.5 s to 
slower respiration with a period of 8.5 s, with intervals of 

1.25 s. Each respiration period consists of four 50‑s trials 
for each participant. Figure  9a depicts the filtered fNIRS 
signal using the proposed method, with its four trials 
displayed for each of the five respiration periods arranged 
from top to bottom on the left side of the figure. The first 
and last 5 s of each trial are excluded due to transitions 
between tasks. On the right side of the figure, corresponding 
signals from the respiration strain gauge sensor attached 
to the participant’s body with a chest band are shown. In 
addition, peaks of each signal are calculated using our peak 
detection algorithm and are displayed in the figure.

Figure  9b illustrates the frequency energy using FFT for 
the participants. On the left, the frequency energy derived 
from the filtered fNIRS signal is shown, with each subplot 
containing four frequency spectra representing the four 
repetitions of the respiration task for a specific respiration 
rate. On the right, the corresponding frequency energy 
from the respiration sensor is displayed. For estimating 
respiration rate, one approach is to identify the peak of the 
FFT of the filtered signal, as utilized in a similar manner in 
Article.[21] However, we opted to employ our peak detection 
algorithm and calculate the adjacent peaks to determine the 
inter‑breath interval  (IBI). The median IBI obtained from 
this process was then utilized as the final estimation of the 
breath duration. The mean absolute error (AE) between the 
reference and estimated respiratory durations is provided 
for each subject is shown in Table  2. Considering that 
each subject in the respiration task completed 20 blocks 
of respiration, RR was estimated using both the proposed 
fNIRS‑based method and the reference strain gauge. 
A  paired t‑test was conducted for each subject to compare 

Figure  10: The Bland‑Altman plot comparing the estimated respiration 
duration from functional near‑infrared spectroscopy and the respiration 
sensor. The data are categorized into five highlighted areas representing 
respiration duration speeds  (inter beat interval =  [3.5s … 8.5s]) for all 
participants. RR: Respiratory rate

Figure  9: Time and frequency analysis of respiration signals from proposed method and chest band sensor.  (a) Filtered functional near‑infrared 
spectroscopy  (fNIRS) signals  (left) and corresponding respiration signals  (right) for one subject, comprising four trials across five respiration 
duration speeds (inter beat interval = [3.5s …8.5s]). (b) Frequency domain representation of filtered fNIRS signals (left) and chest band signals (right). 
CCFA: Cumulative curve fitting approximation, fNIRS: Functional near‑infrared spectroscopy
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the two measurements, and no significant difference was 
observed across all subjects  (P  >  0.05). The average 
AE across all trials in test dataset is reported as 0.18s. 
In addition, to evaluate the overall performance of the 
proposed method, a Bland–Altman plot  [Figure  10] was 
utilized. This method assesses the agreement between 
reference and estimated RRs by plotting the difference 
between each estimate and the references against their 
mean.

Discussion
This study aimed to investigate the feasibility of extracting 
HRV and respiration parameters from fNIRS signals using 
a novel filtration technique called CCFA. Concurrent 
recordings of fNIRS, ECG, and respiration with a chest 
band strain gauge were obtained from participants during 
a controlled respiration task. Real‑time window‑based 
peak detection algorithms were applied, and two‑third of 
the dataset was used to optimize the parameters of the 
proposed method. By applying the peak location correction 
method based on polynomial fitting, as outlined in 
Algorithm 1, a significant improvement in HRV extraction 
was observed, with the correlation increasing from 81.32% 
to 92.11%. Although up‑sampling the fNIRS data from 
10  Hz to 100  Hz could be considered, the polynomial 
fitting approach, focused solely on the detected candidate 
peaks, proved more effective in enhancing performance. To 
assess the agreement between the physiological parameters 
derived from fNIRS signals and those obtained from ECG 
and respiration reference measures, correlation coefficients 
such as Pearson, Spearman, and intra‑class were computed. 
In addition, the BAR was utilized to quantify the agreement 
between HRV from fNIRS and ECG. The results showed a 

high degree of agreement  (r  >  0.92, BAR  <6%) between 
the extracted HRV and reference measures. Moreover, 
paired t‑tests revealed no significant difference between the 
respiration periods estimated from fNIRS and the reference 
for all subjects, with mean AEs of 0.18 s for respiration 
period and 0.32 breaths per minute  (bpm) for respiration 
rate. However, the study has several limitations that 
warrant consideration in future research. First, the use of 
CCFA with a large window size may not be suitable for 
real‑time processing due to its time‑consuming nature. 
Down‑sampling the CCFA window could potentially 
enhance its efficiency. Second, the simplicity of the data 
recording protocol minimized contamination of fNIRS 
data by motion artifacts, necessitating further investigation 
into the performance of the peak detection algorithm with 
datasets containing more artifacts. Finally, the reliability of 
the proposed method was assessed only on young healthy 
subjects, highlighting the need to evaluate its robustness 
across diverse cohorts, including elderly individuals, 
neonates, and patients, as age‑related factors may impact 
the performance of RR estimation algorithms.[34]

In comparing the results of this study with previous 
research, the current approach achieved a mean AE of 
0.32 breath per minute in estimating RR, while the method 
reported in article[21] yielded a mean AE of 1.3 breath 
per minute. Another recent study focusing on neonates 
reported a mean AE of 1.1 breath per minute.[26] This 
study intentionally narrowed the range of the respiration 
period during the task from 2.5s to 10s[21] to 3.5s to 8.5s, 
influenced by the typical respiratory period for healthy 
adults at rest, which falls within the range from 3.5s to 5s 
or approximately 12–18 breaths per minute.   By focusing 
on a narrower range closer to this typical respiratory 

Table 1: Comparison of the heart rate variability derivation algorithm from functional near‑infrared spectroscopy 
with reference electrocardiogram on the training dataset using five‑fold cross‑validation, along with the test dataset 

made up of completely unseen subjects
Subjet/fold BPF CCFA method

Mean 
error (s)

Maximum 
error (s)

Correlation 
(%)

BAR 
(%)

Mean 
error (s)

Maximum 
error (s)

Correlation 
(%)

BAR 
(%)

Train data
Fold 1 0.053 0.142 91.37 6.48 0.014 0.093 94.25 5.87
Fold 2 0.036 0.137 90.17 6.21 0.012 0.098 92.33 5.24
Fold 3 0.061 0.172 91.53 6.87 0.018 0.124 91.27 6.02
Fold 4 0.059 0.128 92.12 6.12 0.013 0.126 94.51 5.39
Fold 5 0.044 0.153 90.89 6.39 0.012 0.137 93.46 5.32
Average 0.051 0.146 91.22 6.41 0.014 0.116 93.16 5.57

Test data
Subject 1 0.061 0.157 90.91 6.22 0.013 0.112 93.15 5.27
Subject 2 0.055 0.149 91.17 5.79 0.015 0.140 92.81 6.00
Subject 3 0.062 0.161 89.98 6.32 0.016 0.142 91.13 6.02
Subject 4 0.059 0.173 90.31 6.45 0.016 0.134 92.21 5.92
Subject 5 0.063 0.167 90.42 6.71 0.017 0.128 91.24 5.72
Average 0.060 0.161 90.56 6.30 0.015 0.131 92.11 5.78

BPF – Bandpass filtering; CCFA – Cumulative curve fitting approximation; BAR – Bland‑Altman Ratio
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period, the experimental conditions were aligned more 
closely with physiological norms. However, this deliberate 
narrowing of the respiration period range does pose a 
limitation to the generalizability of the findings, as the 
algorithm’s performance was primarily tested on seated 
adults in a resting state. This limitation implies that 
the algorithm’s effectiveness may vary when applied to 
individuals in different conditions or populations, such 
as those engaged in physical activity[35] or individuals 
with respiratory conditions, as well as across various 
age groups.[36‑38] In addition, differences in task design 
between the referenced studies may account for variations 
in results. Future studies should address these limitations 
to advance the applicability and reliability of fNIRS‑based 
physiological monitoring techniques. Nevertheless, the 
findings indicate that the CCFA method can be among the 
top approaches for estimating RR, extracting HRV, and 
determining HR from fNIRS data.

Conclusions
In this study, novel algorithms were developed for extracting 
respiration and HRV from fNIRS signals without assuming 
quasi periodicity or stationarity. All filtering processes 
were conducted using the nonstationary processing method 
called CCFA. By employing a single fNIRS device, both 
brain activity and physiological parameters such as HR 
and respiration could be accurately extracted. Notably, 
only the optical signal was utilized without considering 
the concentration of the fNIRS signal, such as HbO2. 
The proposed method offers a versatile approach for 
approximating RR, HR, and HRV in applications where the 
analysis of both cerebral and physiological activities may 
synergize.
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