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Investigation of Electrical Signals in the Brain of People with Autism

Using Effective Connectivity Network

Abstract

Background: Unlike other functional integration methods that examine the relationship and
correlation between two channels, effective connection reports the direct effect of one channel
on another and expresses their causal relationship. In this article, we investigate and classify
electroencephalographic (EEG) signals based on effective connectivity. Methods: In this study, we
leverage the Granger causality (GC) relationship, a method for measuring effective connectivity, to
analyze EEG signals from both healthy individuals and those with autism. The EEG signals examined
in this article were recorded during the presentation of abstract images. Given the nonstationary
nature of EEG signals, a vector autoregression model has been employed to model the relationships
between signals across different channels. GC is then used to quantify the influence of these channels
on one another. Selecting regions of interest (ROI) is a critical step, as the quality of the time periods
under consideration significantly impacts the outcomes of the connectivity analysis among the
electrodes. Results: By comparing these effects in the ROI and various areas, we have distinguished
healthy subjects from those suffering from autism. Furthermore, through statistical analysis, we
have compared the results between healthy individuals and those with autism. Conclusion: It has
been observed that the causal relationship between these two hemispheres is significantly weaker in
healthy individuals compared to those with autism.
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Currently, electroencephalographic (EEG)
signals are considered reliable tools for
identifying and diagnosing abnormal
symptoms and diseases.’! Experts are
attempting to develop diagnostic biomarkers
capable of differentiating between the wave
patterns of healthy individuals and those

Introduction

Autism spectrum disorder (ASD) is a
set of clinical presentations that emerge
due to neurodevelopmental disorders.
Symptoms of ASD are related to social
communication, imagination, and behavior.

Accurate and timely diagnosis of ASD can
significantly improve the quality of life
for individuals with ASD.!! According to
recent studies in the United States, 1 in 68
children are diagnosed with this disorder,
and its prevalence is five times higher in
boys than in girls (1 case in every 48 boys
against 1 case in every 189 girls).

There is a hypothesis suggesting that
ASDs are linked to abnormal neural
connectivity.” However, measuring this
connectivity in practice presents challenges.
Therefore, to assess the validity of this
hypothesis, a range of brain imaging
modalities and multiple methods for
calculating connectivity are utilized.
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with autism.

The connectivity of brain regions provides
such a concise report on the activity of
nerve cells that its description of the
relationships between different brain regions
is a very important subject in neuroscience.
Interactions between specialized areas of
brain function are crucial for normal brain
operation. EEG is a suitable technique
for recording these interactions because it
measures the entire brain’s activity within
milliseconds. However, EEG records the
activity of the cortex via the scalp in such
a way that the activity of a primary source
in the cortex may be recorded by more than
one sensor (EEG electrode).

Advances in research in network analysis,
time-series  analysis, and biomedical
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engineering have facilitated the extraction of brain network
structures based on EEG signals. By assuming various
models for EEG signals, connectivity can be defined from
multiple perspectives. There are two primary definitions of
brain connectivity: functional connectivity and effective
connectivity.[®

Functional connectivity is defined as the temporal
correlation between spatially distinct events. The
calculation of functional connectivity involves checking the
symmetrical correlation between the active regions of the
brain. In other words, if there is a statistical relationship
between the recorded activities of these regions, they
are said to have functional connectivity, indicating that
these regions are components of a network. Functional
connectivity reflects the similarity and/or synchronous
activity of brain regions, regardless of the source of
this similarity.”? That is, functional connectivity cannot
recognize situations in which two regions are not directly
interconnected but exhibit similar behavior due to a
common source in the brain.

From the standpoint of connectivity measurement, the
importance of using EEG lies in capturing the dynamics
of brain networks on a timescale of <1 s. Its temporal
resolution enables the examination of brain activity across
large networks. However, the low spatial resolution of
EEG increases the risk of false positives due to volume
conduction and artificial connections. To mitigate these
drawbacks, it is possible to search for transient changes
in brain sources by employing isolation and localization
techniques. This guides researchers toward connectivity
metrics that incorporate source reconstruction and
their causal effects. It should be noted that the source
localization (reconstruction) problem can never be
completely resolved. However, there has been very exciting
and progressive research in this field. A key alternative
often useful in the study of connectivity is effective
connectivity, as opposed to functional connectivity. Unlike
functional connectivity, which determines statistical
dependencies between neural signals without considering
directed interactions (symmetric), effective connectivity
assesses the direct influence of one brain region on
another (asymmetric).

In other words, effective connectivity quantifies the extent
to which an event in one region precipitates changes in
the activity of other regions. The influence of one EEG
channel on others can be ascertained through dynamic
causal modeling (DCM). This model, stemming from a
channel integration model, encapsulates the mechanisms
of neural activities. Here, the objective is to identify
which brain structures within a functional network
causally impact other network components. In addition,
the multichannel autoregressive (AR) model (vector
autoregression [VAR] model) serves as another suitable
model for synchronizing EEG signals.®! This model is

constructed using a two-variable AR model, also known
as a VAR model, which includes both time series in their
past values. The noise variance for the first channel in
the AR model is juxtaposed with the noise variance in
the VAR model, comprising both the first and second
channels. If the variance in the single-channel model is
significantly reduced in comparison to the two-channel
model, it suggests that the second time series exerts a
causal influence on the first series. The principal advantage
of this criterion is its interpretability within the context of
both random and deterministic models.

In 2015, a comparative study was conducted in the field of
patterns related to brain connections on healthy people and
people with autism.!'"! In this study, a screening strategy is
proposed to distinguish individuals with ASD from healthy
individuals. Connection patterns are estimated based on
EEG data collected from 8 brain regions under different
psychological conditions. EEG data from 12 healthy
individuals and 6 autistic children (aged 7-10 years) in
resting state with eyes open and eyes closed, as well as
when people were exposed to emotional faces (happy,
sad, and calm), had been collected. The performance
of the proposed system is evaluated separately in each
mental state. Higher detection rates are provided by
using functional connectivity feature extraction than
other feature extraction methods. In autistic children,
understanding of emotional faces is disturbed. Therefore,
the stimulus-processing speed decreases. This may be due
to changes in the functional and effective structure of the
brain, which has been shown using EEG studies.”

In 2015, Klamer et al. were able to diagnose a group of
individuals with epilepsy by extracting characteristics
from EEG signals.'” In addition, in the same year, further
research led to the classification of 30 children, who had
been definitively diagnosed with autism, into various
categories, including mild, moderate, and severe ASD.!!!
In recent years, the diagnosis of autism disorder through
feature extraction and the classification of EEG signals
from both healthy individuals and those with autism has
been conducted.

In this research, both causal relationships (effective

connectivity measures) and correlations between two brain

regions (functional connectivity measures) have been
utilized to diagnose autism by analyzing EEG signals.

The following points are considered when calculating the

effective connectivity measures:

* In this research, scalp EEG signals are utilized without
the application of any source localization algorithm.
Instead, to account for the limitations of scalp EEG
signals and to extract actual causalities in the brain,
effective connectivity measures are employed

» Calculating effective connectivity measures necessitates
a predefined physiological EEG generative model;
without it, the results would lack significance
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* In the current study, the Granger causality (GC) method
in the time domain is employed to measure the effective
connectivity of healthy and autistic brains. This research
differs from previous studies in this field due to the
reduced computational load, thereby simplifying the
diagnosis of the disorder

» The dataset used in this article includes 9 subjects with
autism and 7 healthy subjects, with the EEG signal of
each individual recorded using 129 channels. This high
number of channels creates a dense record of scalp
activity, from which more information can be gleaned

* The model assumed for measuring GC is a VAR
model that accounts for noise. Consequently, in the
preprocessing stage, the step of removing noise and
specific signal bands is omitted, which reduces the time
required for preprocessing. In addition, this allows for
the analysis of all frequencies.

The structure of the article is as follows: Section “Materials
and Methods” explains the proposed method and the
properties of the data. Section “Implementation” explains
the implementation of the proposed method. Section
“Results” presents the results of applying the method.
Finally, Section “Conclusion” discusses the conclusions
of our proposed method and compares the data of healthy
individuals and those with autism.

Materials and Methods

The human brain is a complex network consisting of several
regions through which information is transferred from
one region to another. By measuring brain connectivity
and extracting the resulting features, we can define a
network known as a functional integration network. The
measurement of the connectivity of brain regions is divided
into three categories: structural connectivity, functional
connectivity, and effective connectivity.!'?!

Unlike the symmetric nature of functional connectivity,
effective connectivity accounts for the asymmetric causal
dependencies. The aim of effective connectivity measures is
to identify which brain structures within a network causally
influence other elements during rest or cognitive tasks.
Effective connectivity is determined using various methods,
including DCM,I™! structural equation modeling,!'*! and
GC.

In this article, we utilize GC to calculate the relationships
between electrodes at various points on the scalp and
ultimately investigate their role in the diagnosis of ASD.

Other studies have used other methods of functional
connectivity or effective connectivity in order to diagnose
autism directly. Predictive and improved methods of
multivariate realizations have been used to infer GC among
EEG signals. Due to the high temporal resolution, EEG
data recorded from continuous neural activity are suitable
for GC analysis."™ In this research, the GC method has
been used directly in the time domain, so that by reducing
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the calculations, the diagnosis of the disorder can be done
more easily.

This analysis is performed on scalp EEG signals by
measuring the correlation of head points. The calculation of
GC in time series depends on linear methods. Linearization
models should be used in nonlinear and unstable EEG
signals. GC is a method to infer certain types of causal
relationships between random variables in order to reduce
the error in predictions.

The block diagram of the proposed method is shown in
Figure 1.

Dataset

The dataset utilized in this research includes EEG signals
from 9 subjects diagnosed with autism and 7 healthy
subjects. The subjects were children aged between 26.6 and
98.7 months. The EEG signals were recorded using 129
high-density channels at a sampling frequency of 256 Hz
with geodesic grids. Data recording occurred while the
participants watched silent videos featuring the movement
of soap bubbles and other abstract images on a computer.[']

The EEG recording lasted between 2 and 6 min, varying
according to each child’s adaptation to the conditions.
Sedation was not employed for electrode placement or
during the EEG recording. The EEG signals were amplified
using a NetAmps 300 amplifier. All data were collected
in compliance with the guidelines set by the Institutional
Review Board of the University of California. Written
consent was obtained from the parents of the participants
before commencing the study activities. Detailed
information about the subjects is presented in Table 1.

Data preparation

In the preprocessing step, the data were first normalized
between 0 and 1. Subsequently, some channels identified
as malicious were removed. The voltage values in certain
channels exhibited a significant numerical difference
compared to others; after normalization, some channels
attained a value of one across all 30,000 samples. Indeed,
the uniform potential (value of one) along the entire length
of the channel poses challenges in variance calculation.

N-1

15
H_N_lizz:,xi

Here, p represents the average value of the channel and N
is the total number of samples.

1 N-1 ,
var=——>» |x -
N-1;| -

This issue is predominantly observed in the data from
electrodes 125 to 129, which are considered destructive
channels and thus removed from the measurement.
Consequently, 124 channels were utilized for testing and
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cwme o [

Figure 1: The block diagram of the proposed method. EEG: Electroencephalographic; VAR: Vector autoregression

Table 1: Detailed information of the dataset used in this study

Group Age Site Gender  Meds Genetics  Epilepsy Verbal Nonverbal
(months) Developmental Developmental
Quotient (VDQ) Quotient (NVDQ)

ASD 61.2 UCLA Male Focalin, risperidone ~ N/A no 51 48
ASD 26.6 UCLA Male none N/A no 19 45
ASD 39.3 UCLA Male none N/A no 33 46
ASD 63 UCLA Male none N/A no 43 41
ASD 28.8 UCLA Male none N/A no 28 52
ASD 532 UCLA Female  risperidone N/A no 56 51
ASD 48.6 UCLA Male none N/A no 17 49
ASD 323 UCLA Male none N/A no 25 43
ASD 58.5 UCLA Female Zoloft N/A no 103 74
ASD 98.7 UCLA Male melatonin N/A no 21 50

TD 57 UCLA Female none N/A no 122 94

TD 54 UCLA Male none N/A no 98 97

TD 29 UCLA Male none N/A no 131 157

TD 55 UCLA Male none N/A no 140 107

TD 38.8 UCLA Female none N/A no 145 149

TD 43.8 UCLA Male none N/A no 109 115

TD 40.8 UCLA Male none N/A no 141 113

TD 59.6 UCLA  Female none N/A no 127 103

TD 59.6 UCLA Male none N/A no 112 117

calculating GC. Furthermore, to enhance accuracy, a
window comprising 1000 time points — equivalent to 4
s of data — was randomly selected. This dataset is used
in Ardakani et al.’s study.'”) The preprocessing process
in each study is tailored to the chosen method for
analyzing the recorded data. This may include applying
intermediate filters to the data, altering the sampling
frequency, changing the reference electrode, removing
harmful channels, extracting principal components, and
deciding whether to retain or discard these components.
In the preprocessing stage, these steps are applied at the
researchers’ discretion. In this study, we employed data
normalization, removed destructive channels, and applied
a low-pass filter.

Vector autoregression modeling

The GC framework is indeed a method for quantifying the
influence of a time series on another. The foundation of GC
is the AR model applied to individual channels. For a given
channel x, a p-th order AR model can be represented by
the following Eq. (1):

4

P
x(t)=" 4, x(t-1)+n,(1) (1)
=1
Here, p is the model order, indicating the number of past
samples on which the signal depends. Here, 7_represents
noise with zero mean and 0'12 variance.'! 4, is the
dependency coefficient of /-th past sample time to current
time.

In general, selecting the appropriate coefficients A and noise
variance 0'12 =Var(n, (t)) contributes to the stability of the
model. Typically, in AR modeling, the mean and variance
of the noise remain constant over time. An AR process will
be stable if the matrix of coefficients is invertible:

det(I-A) # 0

Extending this single-channel model to a two-variable AR
model, referred to as a VAR model, both time series could
be related to each other by their past values. The same
formulation could be written for the VAR model of the x
and y channels.
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i x(-1)+ Ay y(t-1)+e, 1
. @)
7 2k

t l +A22y(t l)+e ()

where e_and e, are the zero-mean noises relevant to the

. . . 2 .
channels, with respective variances o and O, variances.

o is the covariance of e and e. After calculating the AR
and VAR models for a channel x and y, the noise variance

of the AR model for the x-channel (o7 ) is compared with

its corresponding noise variance in the VAR model (o). If

it is significantly reduced, it indicates that the y time series
has a causal effect on the x time series.

Two important parameters, whose proper estimation is
crucial for creating an optimal regression model, are the
model coefficients and the noise variance. The least squares
method is commonly used to estimate the parameters of
the AR and VAR models.!' Including more variables than
necessary can yield misleading results. In other words,
the model order must be selected accurately. Thus, the
objective is to determine the model order that minimizes
a given criterion. In this study, the Akaike information
criterion (AIC) method is employed due to its effectiveness;
the most precise model is the one with the lowest AIC
value. Moreover, the model order is influenced by the
sampling quantity. Experiments suggest that for EEG data
with a sampling rate of 256 Hz, the optimal model order
ranges between 20 and 30.”” In this study, due to the
variance between data in healthy and autism states, a range
of 1-30 has been considered for the model order. The AIC
is calculated for each potential model order. Ultimately,
the order that yields the minimum AIC value from these
30 calculations is chosen as the most appropriate for the
model.

Compatibility percentage

To evaluate the performance of the regression models,
the compatibility percentage is assessed. This metric
demonstrates what percentage of the original data’s
correlation is accurately reproduced in the model-based
simulated data. For this purpose, both the original
and simulated signals, as well as their autocorrelation
functions, have been calculated for various delay values.*"!
Consequently, the compatibility percentage is defined as
shown in Eq. 3.

s

IR, - R,
PC=|1- T | <100 ©)

Here, R_is the correlation matrix of the modeled data and
R_is the correlation matrix of the original data. A PC value
close to 100% indicates that the modeled data closely
resemble the original, thereby validating the success of
the modeling. Conversely, a PC value near zero signifies
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a failure in the modeling process. Ideally, the PC should
be >85% for the model to be considered successful.

In this research, efforts have been made to maximize
the compatibility percentage through preprocessing.
Subsequently, based on the VAR coefficients of such a
model, the effective connectivity of EEG channels is
determined. These connectivity values are anticipated to
serve as significant features for the detection of autism.

Regression model performance accuracy test

To evaluate the performance of the regression model within
the written program, an AR model was generated using
random data.?? For instance, two coefficients, a = —0.25
and b = 0.75, were chosen for the delay values P = 1 and
P = 2, respectively. In addition, random Gaussian white
noise was generated. These parameters were used to create
a random channel, which was then incorporated into the
program code. Upon executing the program, reasonable
estimates for the coefficients a and b were obtained. For
a two-channel model, the coefficients at each order of the
P model correspond to a 2 x 2 matrix in the following
form:

ﬁ:[Au AIZ]
4, Ay

Due to the independence of the channels, the coefficients
A,, and A4, are close to zero in order to check the causal
relatlonshlps

Calculation of effective connection

In the proposed method, the AR and VAR models in

the time domain are utilized to calculate the GC.[*! As

outlined in the previous section, two stages of modeling are

undertaken:

* Modeling single-channel signals (as per Eq. [1]), which
have noise variances ranging from 0'12 to 0'1224

*  Where pairs of channels are modeled together with the
aim of measuring all possible connectivities between
brain regions. For each pair (channels i and j), a
covariance matrix is constructed as follows:

2 ) {O-ﬁ O-lj :|
noise
Gy Oy

To interpret an effect from channel j toward channel i, the
following two conditions must be met:

1 0,20,

2) be the matrix of coefficients A>0 for 1 € {1...p}.

Accordingly, GC or the impact of channel j on channel i is
defined as follows:

O—i
Fy = lna_,-,- (4)
As a result of calculating o, a 124 x 124 GC connectivity
matrix is created, whose diagonal elements are undefined.
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Thresholding

After estimating GC as the F defined in Eq. 4, it is necessary
to discard some small values. These may not indicate actual
connectivity but rather arise from measurement noise
and errors in covariance estimation. Therefore, analyzing
confidence intervals and performing statistical assessments
for threshold selection are crucial in determining information
flow or causality in the brain.***! The concept of a normal
distribution and the null hypothesis (H,) can be applied. The
null hypothesis posits that there is no causal connectivity
between two brain regions (no information flow). Assuming
a normal distribution for GC values, a threshold can be
established for each alpha value to achieve a significant level
for the correct rejection of the null hypothesis. According to
a rule for conducting a statistical hypothesis test based on
an observed value, the null hypothesis is rejected when the
probability of H, for the observed value is <a, as illustrated
in Figure 2.2¢
*  HO (null hypothesis): Also known as the statistical or
null hypothesis, it posits the absence of a relationship,
effect, or connectivity between brain regions. It is the
default assumption that there is no effect or difference
* HI1 (alternative hypothesis): This hypothesis suggests
the presence of a relationship, effect, or connectivity
between brain regions. It is considered when there is
sufficient evidence to reject the null hypothesis.

In hypothesis testing, you compare your data against the
predictions made by HO. If the data significantly deviate
from what is expected under HO, you may reject the null
hypothesis in favor of H1, suggesting that your findings are
not due to random chance.

Threshold selection

Finally, GC values are calculated for all valid 124 channels of
each subject. Subsequently, it is necessary to exclude the small
GC values. To determine the appropriate threshold, considering
the null hypothesis HO, histograms of GC values for both
healthy and autistic subjects are constructed, as depicted
in Figure 3. The dispersion of GC values among healthy
individuals and those with autism has been analyzed. Given
the similarity between both groups in the range of 0-0.05, a
threshold of 0.05 has been established for further examination.
Therefore, GC values >0.05 have been scrutinized. By setting
this threshold, a subset of correlations between channels and,
consequently, certain brain regions can be compared between
healthy individuals and those with autism. The investigations
reveal that the graphs representing healthy individuals are
consistent within the group, and similarly, the graphs for
individuals with autism are consistent within their group.

As mentioned in Section “Thresholding,” the rejection of
null hypothesis for healthy people is shown in Figure 4.

In the following, the results, which include a 124 x 124
matrix for each data, are analyzed to compare healthy and
autistic people.

Do not reject Hg

Reject Hy

Critical

i
!
!
1
!
!
1
!
!
!
!
!
!
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!
!
!
!
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Figure 2: Statistical assumption test
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Figure 3: Histogram chart of Granger causality values >0.05 (a) in healthy
people, (b) in people with autism
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Figure 4: Determining the statistical test threshold in healthy people

Implementation

As mentioned in Section “Data preparation,” the data
contains 124 channels; each channel represents a time
series (124 EEG channels with 1000 time samples in a
signal window). By applying AR and VAR models to
single channels and channel pairs of windowed EEG
signals, we obtain 124 X 124 connectivity values for
each window, which are used to measure their causal
effects.

The results are examined from two perspectives:

6 Journal of Medical Signals & Sensors | Volume 14 | Issue 8 | August 2024



Bahrami, et al.: Investigation of electrical signals in the brain of people with autism

» Different regions of the brain are analyzed, with some
designated as regions of interest (ROIs)

* The effective connectivity originating from the ROI
areas is statistically assessed to distinguish healthy
individuals from those with autism.

Regions of interest description

Selecting ROIs is crucial to confine the spatial area and
enhance accuracy in research. Each electrode, representing a
brain region, is denoted by a number. Figure 5 schematically
displays the 128 electrodes utilized for EEG recording. It is
evident that the electrodes in the occipital region fall within
the numerical range of 60-100. The electrodes numbered
from 40 to 60 correspond to the left hemisphere and the lateral
region. The regions responsible for language processing are
situated on the left side of the brain, which is predominantly
used by individuals to comprehend concepts. As previously
mentioned, the EEG signals were recorded from individuals
while they were observing soap bubbles. Consequently, it is
anticipated that the occipital region, which is associated with
vision processing, would exhibit increased connectivity with
the left hemisphere. This type of connectivity is rational for
comprehending the visual concepts being observed and is
observed in both healthy and autistic subjects.

2 15 9
2 1871610
Bty mald 4

19 4 g
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22012 5
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Figure 5: (a) Electrodes of the left lateral region, (b) electrodes of the
occipital region
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Regions of interest selection

As an example, matrices with GC values >0.05 for
two subjects — one healthy and one with autism — are
visualized in Figure 6. The GC values are color coded
to enhance the visualization. A notable difference
observed between the healthy subject and the subject
with autism is the extent of brain region involvement
and connectivity. As depicted in Figure 6a, in the
subject with autism, all brain regions are engaged when
viewing and processing the images of soap bubbles. For
this reason, certain brain regions were examined more
narrowly, and the ranges of 40—60 (left side area) and
100-120 (right side area) were seclected as ROIs for
this study. These areas are highlighted with red squares
in Figure 6. To facilitate the visualization of effective
connectivity within these ROIs, the electrodes are
displayed in greater detail. In the subject with autism,
Granger connectivity is present in the channels marked
in yellow, with values approximately between 0.25 and
0.3. This level of connectivity is considerably lower
in the healthy subject, with values ranging from 0.05
to 0.1. This indicates that, in healthy subjects, there is
no significant causal connectivity between these two
brain regions when observing soap bubbles as shown in
Figure 6b. Although in Figure 6, only two subjects are
compared, similar differences can be seen in all healthy/
autism subjects. The statistical analysis of distinction of
these two classes is given in the next section.

Results
Statistical analysis

Statistical inference is utilized to make decisions about an
entire population based on information from one to two
samples. Bar graphs are commonly employed to compare
groups based on a qualitative variable. The values on the

Figure 6: (a) Granger causality >0.05 in autistic people. (b) Granger causality >0.05 in healthy people
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vertical axis of these charts typically represent counts of
a qualitative variable or calculations of a statistical index
for a quantitative variable. In this case, a bar chart is
used to display the number of levels exceeding 0.05 in
the GC matrix, facilitating a comparison between healthy
individuals and those with autism. The vertical axis of the
bar chart indicates the count of levels >0.05 in the GC
matrix for channels 40-60 when connected to channels
100-120. As illustrated in Figure 7, the number of these
regions in individuals with autism is nearly tenfold that
in healthy individuals. Within this channel range, there
are 21 x 21 potential effective connection patterns. Out of
these 441 patterns, healthy individuals exhibit at most 50
effective connections. However, in the autism group, there
are observed connections ranging from a minimum of
80 to a maximum of 430. Indeed, effective connectivity
within this channel range is significantly greater in
individuals with autism, indicating a higher degree of
inter-channel influence. To differentiate these two groups

the
number _J
of GC
values>

0.05

Autistic people

Healthy people

Figure 7: Bar graph of the number of Granger causality levels >0.05.
GC - Granger causality

and compare outcomes, other statistical methods can also
be employed.

The dispersion and distribution of Granger values across
this range of channels, and their differences between
healthy individuals and those with autism, were analyzed
using a box plot. To thoroughly examine certain datasets,
more information is required beyond central tendency
measures such as the mean, median, and mode. A box
plot provides insights into the spread of data wvalues.
The rectangle within the plot represents the interquartile
range, encompassing the distribution between the 25" and
75" percentiles. The 10" percentile is the value below
which x percent of the data falls. Thus, the middle 50%
of the data lies between the 25" and 75" percentiles. The
box plot results for the data pertaining to healthy and
autistic individuals are depicted in Figure 8. According to
the concepts discussed, the graphs labeled with numbers
1-7 correspond to healthy individuals, while those labeled
816 pertain to individuals with autism. As outlined in
the previous section, the nonoverlapping box plots for the
autistic group compared to those for the healthy group
indicate a significant statistical difference between the
two. Furthermore, a visual inspection of the graphs in
Figure 8 reveals a clear distinction in the range of values
between the datasets of healthy individuals and those
with autism. The matrix values of effective connections
for healthy individuals are predominantly centered around
zero, whereas the box plots for individuals with autism
demonstrate a broader dispersion of values within the
effective connections matrix. The GC matrix is a 124 x 124
matrix. When setting a threshold with GC values >0.05,
all other values in the matrix are considered zero. It is
observed that the number of GC values exceeding 0.05
is lower in healthy individuals compared to those with
autism within the specified channel range. Consequently,
for healthy groups, the median and the first and third

02

o
+

4
HH +HH
A H+
P
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-
HHEH

AR+

Healthy people

Autistic people

Figure 8: Graphic box of Granger value
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quartiles are zero, with data points clustering closely
between 0.05 and 0.1. In contrast, individuals with autism
exhibit effective connectivity across most brain regions,
with GC values >0.05. This results in differing statistical
values, including the median. In addition, in certain cases
of autism, the Granger values approach 0.25, indicating a
more extensive interconnection between channels in the
left and right lateral areas of the brain.

Conclusion

In this study, the impact of brain region activity on one
another for both healthy individuals and people with
autism is investigated using the effective connectivity
method (GC). As noted, the research involved calculations
based on data from 9 individuals with autism and 7 healthy
individuals, encompassing 124 channels recorded at a
frequency of 256 Hz.

After normalizing the data and removing destructive
channels as part of the preprocessing, the application of
VAR models and a composite index like the GC index
in the time domain enabled the evaluation of changes in
brain connectivity among the participants. Following
VAR modeling for channel pairs, the GC value for each
model was calculated using the noise variance calculation
method outlined in Formula 4. The GC index quantifies the
influence of one brain channel on another.

Given the similarities between both groups in the range
of 0-0.05 and the differences beyond 0.05, a threshold of
0.05 was established. For each dataset, an Excel file was
generated containing the results for 124 channels. Essentially,
there are 124 x 124 values representing the causal and
unidirectional communication from row channels to column
channels. Considering the channels’ independence in
effective connectivity, the principal diagonal — representing
each channel’s self-connection — is set to zero. Furthermore,
in accordance with the GC threshold, values <0.05 are
also zeroed in the matrix. Subsequent analysis of the left
and right hemispheres revealed that the causal interactions
between these hemispheres are significantly lower in healthy
individuals compared to those with autism.
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