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Abstract
Background: Unlike other functional integration methods that examine the relationship and 
correlation between two channels, effective connection reports the direct effect of one channel 
on another and expresses their causal relationship. In this article, we investigate and classify 
electroencephalographic  (EEG) signals based on effective connectivity. Methods: In this study, we 
leverage the Granger causality  (GC) relationship, a method for measuring effective connectivity, to 
analyze EEG signals from both healthy individuals and those with autism. The EEG signals examined 
in this article were recorded during the presentation of abstract images. Given the nonstationary 
nature of EEG signals, a vector autoregression model has been employed to model the relationships 
between signals across different channels. GC is then used to quantify the influence of these channels 
on one another. Selecting regions of interest (ROI) is a critical step, as the quality of the time periods 
under consideration significantly impacts the outcomes of the connectivity analysis among the 
electrodes. Results: By comparing these effects in the ROI and various areas, we have distinguished 
healthy subjects from those suffering from autism. Furthermore, through statistical analysis, we 
have compared the results between healthy individuals and those with autism. Conclusion: It has 
been observed that the causal relationship between these two hemispheres is significantly weaker in 
healthy individuals compared to those with autism.
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Introduction
Autism spectrum disorder  (ASD) is a 
set of clinical presentations that emerge 
due to neurodevelopmental disorders. 
Symptoms of ASD are related to social 
communication, imagination, and behavior. 
Accurate and timely diagnosis of ASD can 
significantly improve the quality of life 
for individuals with ASD.[1] According to 
recent studies in the United States, 1 in 68 
children are diagnosed with this disorder, 
and its prevalence is five times higher in 
boys than in girls  (1  case in every 48 boys 
against 1 case in every 189 girls).

There is a hypothesis suggesting that 
ASDs are linked to abnormal neural 
connectivity.[2] However, measuring this 
connectivity in practice presents challenges. 
Therefore, to assess the validity of this 
hypothesis, a range of brain imaging 
modalities and multiple methods for 
calculating connectivity are utilized.

Currently, electroencephalographic  (EEG) 
signals are considered reliable tools for 
identifying and diagnosing abnormal 
symptoms and diseases.[3‑5] Experts are 
attempting to develop diagnostic biomarkers 
capable of differentiating between the wave 
patterns of healthy individuals and those 
with autism.

The connectivity of brain regions provides 
such a concise report on the activity of 
nerve cells that its description of the 
relationships between different brain regions 
is a very important subject in neuroscience. 
Interactions between specialized areas of 
brain function are crucial for normal brain 
operation. EEG is a suitable technique 
for recording these interactions because it 
measures the entire brain’s activity within 
milliseconds. However, EEG records the 
activity of the cortex via the scalp in such 
a way that the activity of a primary source 
in the cortex may be recorded by more than 
one sensor (EEG electrode).

Advances in research in network analysis, 
time‑series analysis, and biomedical 
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engineering have facilitated the extraction of brain network 
structures based on EEG signals. By assuming various 
models for EEG signals, connectivity can be defined from 
multiple perspectives. There are two primary definitions of 
brain connectivity: functional connectivity and effective 
connectivity.[6]

Functional connectivity is defined as the temporal 
correlation between spatially distinct events. The 
calculation of functional connectivity involves checking the 
symmetrical correlation between the active regions of the 
brain. In other words, if there is a statistical relationship 
between the recorded activities of these regions, they 
are said to have functional connectivity, indicating that 
these regions are components of a network. Functional 
connectivity reflects the similarity and/or synchronous 
activity of brain regions, regardless of the source of 
this similarity.[7] That is, functional connectivity cannot 
recognize situations in which two regions are not directly 
interconnected but exhibit similar behavior due to a 
common source in the brain.

From the standpoint of connectivity measurement, the 
importance of using EEG lies in capturing the dynamics 
of brain networks on a timescale of  <1 s. Its temporal 
resolution enables the examination of brain activity across 
large networks. However, the low spatial resolution of 
EEG increases the risk of false positives due to volume 
conduction and artificial connections. To mitigate these 
drawbacks, it is possible to search for transient changes 
in brain sources by employing isolation and localization 
techniques. This guides researchers toward connectivity 
metrics that incorporate source reconstruction and 
their causal effects. It should be noted that the source 
localization  (reconstruction) problem can never be 
completely resolved. However, there has been very exciting 
and progressive research in this field. A  key alternative 
often useful in the study of connectivity is effective 
connectivity, as opposed to functional connectivity. Unlike 
functional connectivity, which determines statistical 
dependencies between neural signals without considering 
directed interactions  (symmetric), effective connectivity 
assesses the direct influence of one brain region on 
another (asymmetric).

In other words, effective connectivity quantifies the extent 
to which an event in one region precipitates changes in 
the activity of other regions. The influence of one EEG 
channel on others can be ascertained through dynamic 
causal modeling  (DCM). This model, stemming from a 
channel integration model, encapsulates the mechanisms 
of neural activities. Here, the objective is to identify 
which brain structures within a functional network 
causally impact other network components. In addition, 
the multichannel autoregressive  (AR) model  (vector 
autoregression  [VAR] model) serves as another suitable 
model for synchronizing EEG signals.[8] This model is 

constructed using a two‑variable AR model, also known 
as a VAR model, which includes both time series in their 
past values. The noise variance for the first channel in 
the AR model is juxtaposed with the noise variance in 
the VAR model, comprising both the first and second 
channels. If the variance in the single‑channel model is 
significantly reduced in comparison to the two‑channel 
model, it suggests that the second time series exerts a 
causal influence on the first series. The principal advantage 
of this criterion is its interpretability within the context of 
both random and deterministic models.

In 2015, a comparative study was conducted in the field of 
patterns related to brain connections on healthy people and 
people with autism.[1] In this study, a screening strategy is 
proposed to distinguish individuals with ASD from healthy 
individuals. Connection patterns are estimated based on 
EEG data collected from 8 brain regions under different 
psychological conditions. EEG data from 12 healthy 
individuals and 6 autistic children  (aged 7–10  years) in 
resting state with eyes open and eyes closed, as well as 
when people were exposed to emotional faces  (happy, 
sad, and calm), had been collected. The performance 
of the proposed system is evaluated separately in each 
mental state. Higher detection rates are provided by 
using functional connectivity feature extraction than 
other feature extraction methods. In autistic children, 
understanding of emotional faces is disturbed. Therefore, 
the stimulus‑processing speed decreases. This may be due 
to changes in the functional and effective structure of the 
brain, which has been shown using EEG studies.[9]

In 2015, Klamer et  al. were able to diagnose a group of 
individuals with epilepsy by extracting characteristics 
from EEG signals.[10] In addition, in the same year, further 
research led to the classification of 30 children, who had 
been definitively diagnosed with autism, into various 
categories, including mild, moderate, and severe ASD.[11] 
In recent years, the diagnosis of autism disorder through 
feature extraction and the classification of EEG signals 
from both healthy individuals and those with autism has 
been conducted.

In this research, both causal relationships  (effective 
connectivity measures) and correlations between two brain 
regions  (functional connectivity measures) have been 
utilized to diagnose autism by analyzing EEG signals. 
The following points are considered when calculating the 
effective connectivity measures:
•	 In this research, scalp EEG signals are utilized without 

the application of any source localization algorithm. 
Instead, to account for the limitations of scalp EEG 
signals and to extract actual causalities in the brain, 
effective connectivity measures are employed

•	 Calculating effective connectivity measures necessitates 
a predefined physiological EEG generative model; 
without it, the results would lack significance
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•	 In the current study, the Granger causality (GC) method 
in the time domain is employed to measure the effective 
connectivity of healthy and autistic brains. This research 
differs from previous studies in this field due to the 
reduced computational load, thereby simplifying the 
diagnosis of the disorder

•	 The dataset used in this article includes 9 subjects with 
autism and 7 healthy subjects, with the EEG signal of 
each individual recorded using 129 channels. This high 
number of channels creates a dense record of scalp 
activity, from which more information can be gleaned

•	 The model assumed for measuring GC is a VAR 
model that accounts for noise. Consequently, in the 
preprocessing stage, the step of removing noise and 
specific signal bands is omitted, which reduces the time 
required for preprocessing. In addition, this allows for 
the analysis of all frequencies.

The structure of the article is as follows: Section “Materials 
and Methods” explains the proposed method and the 
properties of the data. Section “Implementation” explains 
the implementation of the proposed method. Section 
“Results” presents the results of applying the method. 
Finally, Section “Conclusion” discusses the conclusions 
of our proposed method and compares the data of healthy 
individuals and those with autism.

Materials and Methods
The human brain is a complex network consisting of several 
regions through which information is transferred from 
one region to another. By measuring brain connectivity 
and extracting the resulting features, we can define a 
network known as a functional integration network. The 
measurement of the connectivity of brain regions is divided 
into three categories: structural connectivity, functional 
connectivity, and effective connectivity.[12]

Unlike the symmetric nature of functional connectivity, 
effective connectivity accounts for the asymmetric causal 
dependencies. The aim of effective connectivity measures is 
to identify which brain structures within a network causally 
influence other elements during rest or cognitive tasks. 
Effective connectivity is determined using various methods, 
including DCM,[13] structural equation modeling,[14] and 
GC.

In this article, we utilize GC to calculate the relationships 
between electrodes at various points on the scalp and 
ultimately investigate their role in the diagnosis of ASD.

Other studies have used other methods of functional 
connectivity or effective connectivity in order to diagnose 
autism directly. Predictive and improved methods of 
multivariate realizations have been used to infer GC among 
EEG signals. Due to the high temporal resolution, EEG 
data recorded from continuous neural activity are suitable 
for GC analysis.[15] In this research, the GC method has 
been used directly in the time domain, so that by reducing 

the calculations, the diagnosis of the disorder can be done 
more easily.

This analysis is performed on scalp EEG signals by 
measuring the correlation of head points. The calculation of 
GC in time series depends on linear methods. Linearization 
models should be used in nonlinear and unstable EEG 
signals. GC is a method to infer certain types of causal 
relationships between random variables in order to reduce 
the error in predictions.

The block diagram of the proposed method is shown in 
Figure 1.

Dataset

The dataset utilized in this research includes EEG signals 
from 9 subjects diagnosed with autism and 7 healthy 
subjects. The subjects were children aged between 26.6 and 
98.7  months. The EEG signals were recorded using 129 
high‑density channels at a sampling frequency of 256  Hz 
with geodesic grids. Data recording occurred while the 
participants watched silent videos featuring the movement 
of soap bubbles and other abstract images on a computer.[16]

The EEG recording lasted between 2 and 6  min, varying 
according to each child’s adaptation to the conditions. 
Sedation was not employed for electrode placement or 
during the EEG recording. The EEG signals were amplified 
using a NetAmps 300 amplifier. All data were collected 
in compliance with the guidelines set by the Institutional 
Review Board of the University of California. Written 
consent was obtained from the parents of the participants 
before commencing the study activities. Detailed 
information about the subjects is presented in Table 1.

Data preparation

In the preprocessing step, the data were first normalized 
between 0 and 1. Subsequently, some channels identified 
as malicious were removed. The voltage values in certain 
channels exhibited a significant numerical difference 
compared to others; after normalization, some channels 
attained a value of one across all 30,000  samples. Indeed, 
the uniform potential (value of one) along the entire length 
of the channel poses challenges in variance calculation.
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This issue is predominantly observed in the data from 
electrodes 125 to 129, which are considered destructive 
channels and thus removed from the measurement. 
Consequently, 124 channels were utilized for testing and 
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calculating GC. Furthermore, to enhance accuracy, a 
window comprising 1000  time points  –  equivalent to 4 
s of data  –  was randomly selected. This dataset is used 
in Ardakani et  al.’s study.[17] The preprocessing process 
in each study is tailored to the chosen method for 
analyzing the recorded data. This may include applying 
intermediate filters to the data, altering the sampling 
frequency, changing the reference electrode, removing 
harmful channels, extracting principal components, and 
deciding whether to retain or discard these components. 
In the preprocessing stage, these steps are applied at the 
researchers’ discretion. In this study, we employed data 
normalization, removed destructive channels, and applied 
a low‑pass filter.

Vector autoregression modeling

The GC framework is indeed a method for quantifying the 
influence of a time series on another. The foundation of GC 
is the AR model applied to individual channels. For a given 
channel x, a  p‑th order AR model can be represented by 
the following Eq. (1):

( ) ( ) ( )11
1

l

p

x
l=

x t =  A x t ‑ l + t  ∑ η � (1)

Here, p is the model order, indicating the number of past 
samples on which the signal depends. Here, ηx represents 
noise with zero mean and 2

1σ  variance.[18] 11l
A  is the 

dependency coefficient of  l‑th past sample time to current 
time.

In general, selecting the appropriate coefficients A and noise 
variance ( )2

1 = ( ) xVar tσ η  contributes to the stability of the 
model. Typically, in AR modeling, the mean and variance 
of the noise remain constant over time. An AR process will 
be stable if the matrix of coefficients is invertible:

det(I-A) ≠ 0

Extending this single‑channel model to a two‑variable AR 
model, referred to as a VAR model, both time series could 
be related to each other by their past values. The same 
formulation could be written for the VAR model of the x 
and y channels.

EEG data Pre-processing Data Normalization

Diagnosis people
with autism

Calculation of Granger
causality > 0.05

Production of the
VAR model

Figure 1: The block diagram of the proposed method. EEG: Electroencephalographic; VAR: Vector autoregression

Table 1: Detailed information of the dataset used in this study
Group Age 

(months)
Site Gender Meds Genetics Epilepsy Verbal 

Developmental 
Quotient (VDQ)

Nonverbal 
Developmental 

Quotient (NVDQ)
ASD 61.2 UCLA Male Focalin, risperidone N/A no 51 48
ASD 26.6 UCLA Male none N/A no 19 45
ASD 39.3 UCLA Male none N/A no 33 46
ASD 63 UCLA Male none N/A no 43 41
ASD 28.8 UCLA Male none N/A no 28 52
ASD 53.2 UCLA Female risperidone N/A no 56 51
ASD 48.6 UCLA Male none N/A no 17 49
ASD 32.3 UCLA Male none N/A no 25 43
ASD 58.5 UCLA Female Zoloft N/A no 103 74
ASD 98.7 UCLA Male melatonin N/A no 21 50
TD 57 UCLA Female none N/A no 122 94
TD 54 UCLA Male none N/A no 98 97
TD 29 UCLA Male none N/A no 131 157
TD 55 UCLA Male none N/A no 140 107
TD 38.8 UCLA Female none N/A no 145 149
TD 43.8 UCLA Male none N/A no 109 115
TD 40.8 UCLA Male none N/A no 141 113
TD 59.6 UCLA Female none N/A no 127 103
TD 59.6 UCLA Male none N/A no 112 117



Bahrami, et al.: Investigation of electrical signals in the brain of people with autism

Journal of Medical Signals & Sensors | Volume 14 | Issue 8 | August 2024� 5

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11 12

21 22

l l

l l

p

x
l=1
p

y
l=1

x t = A x t ‑ l + A y t ‑ l +e t

y t = A x t ‑ l + A y t ‑ l +e t








∑

∑
� (2)

where ex and ey are the zero‑mean noises relevant to the 

channels, with respective variances 2
xσ  and 2

yσ  variances. 
σxy is the covariance of ex and ey. After calculating the AR 
and VAR models for a channel x and y, the noise variance 
of the AR model for the x‑channel  ( 2

1σ ) is compared with 
its corresponding noise variance in the VAR model ( 2

xσ ). If 
it is significantly reduced, it indicates that the y time series 
has a causal effect on the x time series.

Two important parameters, whose proper estimation is 
crucial for creating an optimal regression model, are the 
model coefficients and the noise variance. The least squares 
method is commonly used to estimate the parameters of 
the AR and VAR models.[19] Including more variables than 
necessary can yield misleading results. In other words, 
the model order must be selected accurately. Thus, the 
objective is to determine the model order that minimizes 
a given criterion. In this study, the Akaike information 
criterion (AIC) method is employed due to its effectiveness; 
the most precise model is the one with the lowest AIC 
value. Moreover, the model order is influenced by the 
sampling quantity. Experiments suggest that for EEG data 
with a sampling rate of 256  Hz, the optimal model order 
ranges between 20 and 30.[20] In this study, due to the 
variance between data in healthy and autism states, a range 
of 1–30 has been considered for the model order. The AIC 
is calculated for each potential model order. Ultimately, 
the order that yields the minimum AIC value from these 
30 calculations is chosen as the most appropriate for the 
model.

Compatibility percentage

To evaluate the performance of the regression models, 
the compatibility percentage is assessed. This metric 
demonstrates what percentage of the original data’s 
correlation is accurately reproduced in the model‑based 
simulated data. For this purpose, both the original 
and simulated signals, as well as their autocorrelation 
functions, have been calculated for various delay values.[21] 
Consequently, the compatibility percentage is defined as 
shown in Eq. 3.

1 100s r

r

R ‑ R
PC = ‑ ×  

R
 
  
 

� (3)

Here, Rs is the correlation matrix of the modeled data and 
Rr is the correlation matrix of the original data. A PC value 
close to 100% indicates that the modeled data closely 
resemble the original, thereby validating the success of 
the modeling. Conversely, a PC value near zero signifies 

a failure in the modeling process. Ideally, the PC should 
be >85% for the model to be considered successful.

In this research, efforts have been made to maximize 
the compatibility percentage through preprocessing. 
Subsequently, based on the VAR coefficients of such a 
model, the effective connectivity of EEG channels is 
determined. These connectivity values are anticipated to 
serve as significant features for the detection of autism.

Regression model performance accuracy test

To evaluate the performance of the regression model within 
the written program, an AR model was generated using 
random data.[22] For instance, two coefficients, a = −0.25 
and b  =  0.75, were chosen for the delay values P = 1 and 
P  =  2, respectively. In addition, random Gaussian white 
noise was generated. These parameters were used to create 
a random channel, which was then incorporated into the 
program code. Upon executing the program, reasonable 
estimates for the coefficients a and b were obtained. For 
a two‑channel model, the coefficients at each order of the 
P  model correspond to a 2  ×  2 matrix in the following 
form:

11 12

21 22

]= [
A A
A A

β

Due to the independence of the channels, the coefficients 
A21 and A12 are close to zero in order to check the causal 
relationships.

Calculation of effective connection

In the proposed method, the AR and VAR models in 
the time domain are utilized to calculate the GC.[23] As 
outlined in the previous section, two stages of modeling are 
undertaken:
•	 Modeling single‑channel signals (as per Eq. [1]), which 

have noise variances ranging from 2
1σ  to 2

124σ
•	 Where pairs of channels are modeled together with the 

aim of measuring all possible connectivities between 
brain regions. For each pair  (channels i and j), a 
covariance matrix is constructed as follows:

ii ij
noise

ij jj
=
 
 
 

σ σ
Σ

σ σ

To interpret an effect from channel j toward channel i, the 
following two conditions must be met:
1)	 σi˃σii
2)	 be the matrix of coefficients A˃0 for 1 ∈ {1...p}.

Accordingly, GC or the impact of channel j on channel i is 
defined as follows:

i
j i

ii

F = ln→

σ
σ � (4)

As a result of calculating σii, a 124 × 124 GC connectivity 
matrix is created, whose diagonal elements are undefined.
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Thresholding

After estimating GC as the F defined in Eq. 4, it is necessary 
to discard some small values. These may not indicate actual 
connectivity but rather arise from measurement noise 
and errors in covariance estimation. Therefore, analyzing 
confidence intervals and performing statistical assessments 
for threshold selection are crucial in determining information 
flow or causality in the brain.[24,25] The concept of a normal 
distribution and the null hypothesis (H0) can be applied. The 
null hypothesis posits that there is no causal connectivity 
between two brain regions (no information flow). Assuming 
a normal distribution for GC values, a threshold can be 
established for each alpha value to achieve a significant level 
for the correct rejection of the null hypothesis. According to 
a rule for conducting a statistical hypothesis test based on 
an observed value, the null hypothesis is rejected when the 
probability of H0 for the observed value is <α, as illustrated 
in Figure 2.[26]

•	 H0  (null hypothesis): Also known as the statistical or 
null hypothesis, it posits the absence of a relationship, 
effect, or connectivity between brain regions. It is the 
default assumption that there is no effect or difference

•	 H1  (alternative hypothesis): This hypothesis suggests 
the presence of a relationship, effect, or connectivity 
between brain regions. It is considered when there is 
sufficient evidence to reject the null hypothesis.

In hypothesis testing, you compare your data against the 
predictions made by H0. If the data significantly deviate 
from what is expected under H0, you may reject the null 
hypothesis in favor of H1, suggesting that your findings are 
not due to random chance.

Threshold selection

Finally, GC values are calculated for all valid 124 channels of 
each subject. Subsequently, it is necessary to exclude the small 
GC values. To determine the appropriate threshold, considering 
the null hypothesis H0, histograms of GC values for both 
healthy and autistic subjects are constructed, as depicted 
in Figure  3. The dispersion of GC values among healthy 
individuals and those with autism has been analyzed. Given 
the similarity between both groups in the range of 0–0.05, a 
threshold of 0.05 has been established for further examination. 
Therefore, GC values >0.05 have been scrutinized. By setting 
this threshold, a subset of correlations between channels and, 
consequently, certain brain regions can be compared between 
healthy individuals and those with autism. The investigations 
reveal that the graphs representing healthy individuals are 
consistent within the group, and similarly, the graphs for 
individuals with autism are consistent within their group.

As mentioned in Section “Thresholding,” the rejection of 
null hypothesis for healthy people is shown in Figure 4.

In the following, the results, which include a 124  ×  124 
matrix for each data, are analyzed to compare healthy and 
autistic people.

Implementation
As mentioned in Section “Data preparation,” the data 
contains 124 channels; each channel represents a time 
series  (124 EEG channels with 1000  time samples in a 
signal window). By applying AR and VAR models to 
single channels and channel pairs of windowed EEG 
signals, we obtain 124  ×  124 connectivity values for 
each window, which are used to measure their causal 
effects.

The results are examined from two perspectives:

Figure 2: Statistical assumption test

Figure 4: Determining the statistical test threshold in healthy people

Figure 3: Histogram chart of Granger causality values >0.05 (a) in healthy 
people, (b) in people with autism

ba
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•	 Different regions of the brain are analyzed, with some 
designated as regions of interest (ROIs)

•	 The effective connectivity originating from the ROI 
areas is statistically assessed to distinguish healthy 
individuals from those with autism.

Regions of interest description

Selecting ROIs is crucial to confine the spatial area and 
enhance accuracy in research. Each electrode, representing a 
brain region, is denoted by a number. Figure 5 schematically 
displays the 128 electrodes utilized for EEG recording. It is 
evident that the electrodes in the occipital region fall within 
the numerical range of 60–100. The electrodes numbered 
from 40 to 60 correspond to the left hemisphere and the lateral 
region. The regions responsible for language processing are 
situated on the left side of the brain, which is predominantly 
used by individuals to comprehend concepts. As previously 
mentioned, the EEG signals were recorded from individuals 
while they were observing soap bubbles. Consequently, it is 
anticipated that the occipital region, which is associated with 
vision processing, would exhibit increased connectivity with 
the left hemisphere. This type of connectivity is rational for 
comprehending the visual concepts being observed and is 
observed in both healthy and autistic subjects.

Regions of interest selection

As an example, matrices with GC values  >0.05 for 
two subjects  –  one healthy and one with autism  –  are 
visualized in Figure  6. The GC values are color coded 
to enhance the visualization. A  notable difference 
observed between the healthy subject and the subject 
with autism is the extent of brain region involvement 
and connectivity. As depicted in Figure  6a, in the 
subject with autism, all brain regions are engaged when 
viewing and processing the images of soap bubbles. For 
this reason, certain brain regions were examined more 
narrowly, and the ranges of 40–60  (left side area) and 
100–120  (right side area) were selected as ROIs for 
this study. These areas are highlighted with red squares 
in Figure  6. To facilitate the visualization of effective 
connectivity within these ROIs, the electrodes are 
displayed in greater detail. In the subject with autism, 
Granger connectivity is present in the channels marked 
in yellow, with values approximately between 0.25 and 
0.3. This level of connectivity is considerably lower 
in the healthy subject, with values ranging from 0.05 
to 0.1. This indicates that, in healthy subjects, there is 
no significant causal connectivity between these two 
brain regions when observing soap bubbles as shown in 
Figure 6b. Although in Figure  6, only two subjects are 
compared, similar differences can be seen in all healthy/
autism subjects. The statistical analysis of distinction of 
these two classes is given in the next section.

Results
Statistical analysis

Statistical inference is utilized to make decisions about an 
entire population based on information from one to two 
samples. Bar graphs are commonly employed to compare 
groups based on a qualitative variable. The values on the 

Figure  5:  (a) Electrodes of the left lateral region,  (b) electrodes of the 
occipital region

ba

Figure 6: (a) Granger causality >0.05 in autistic people. (b) Granger causality >0.05 in healthy people
ba
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vertical axis of these charts typically represent counts of 
a qualitative variable or calculations of a statistical index 
for a quantitative variable. In this case, a bar chart is 
used to display the number of levels exceeding 0.05 in 
the GC matrix, facilitating a comparison between healthy 
individuals and those with autism. The vertical axis of the 
bar chart indicates the count of levels  >0.05 in the GC 
matrix for channels 40–60 when connected to channels 
100–120. As illustrated in Figure  7, the number of these 
regions in individuals with autism is nearly tenfold that 
in healthy individuals. Within this channel range, there 
are 21 × 21 potential effective connection patterns. Out of 
these 441 patterns, healthy individuals exhibit at most 50 
effective connections. However, in the autism group, there 
are observed connections ranging from a minimum of 
80 to a maximum of 430. Indeed, effective connectivity 
within this channel range is significantly greater in 
individuals with autism, indicating a higher degree of 
inter‑channel influence. To differentiate these two groups 

and compare outcomes, other statistical methods can also 
be employed.

The dispersion and distribution of Granger values across 
this range of channels, and their differences between 
healthy individuals and those with autism, were analyzed 
using a box plot. To thoroughly examine certain datasets, 
more information is required beyond central tendency 
measures such as the mean, median, and mode. A  box 
plot provides insights into the spread of data values. 
The rectangle within the plot represents the interquartile 
range, encompassing the distribution between the 25th  and 
75th  percentiles. The 10th  percentile is the value below 
which x percent of the data falls. Thus, the middle 50% 
of the data lies between the 25th  and 75th  percentiles. The 
box plot results for the data pertaining to healthy and 
autistic individuals are depicted in Figure  8. According to 
the concepts discussed, the graphs labeled with numbers 
1–7 correspond to healthy individuals, while those labeled 
8–16 pertain to individuals with autism. As outlined in 
the previous section, the nonoverlapping box plots for the 
autistic group compared to those for the healthy group 
indicate a significant statistical difference between the 
two. Furthermore, a visual inspection of the graphs in 
Figure  8 reveals a clear distinction in the range of values 
between the datasets of healthy individuals and those 
with autism. The matrix values of effective connections 
for healthy individuals are predominantly centered around 
zero, whereas the box plots for individuals with autism 
demonstrate a broader dispersion of values within the 
effective connections matrix. The GC matrix is a 124 × 124 
matrix. When setting a threshold with GC values  >0.05, 
all other values in the matrix are considered zero. It is 
observed that the number of GC values exceeding 0.05 
is lower in healthy individuals compared to those with 
autism within the specified channel range. Consequently, 
for healthy groups, the median and the first and third 

Figure 8: Graphic box of Granger value

Figure  7: Bar graph of the number of Granger causality levels  >0.05. 
GC – Granger causality
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quartiles are zero, with data points clustering closely 
between 0.05 and 0.1. In contrast, individuals with autism 
exhibit effective connectivity across most brain regions, 
with GC values  >0.05. This results in differing statistical 
values, including the median. In addition, in certain cases 
of autism, the Granger values approach 0.25, indicating a 
more extensive interconnection between channels in the 
left and right lateral areas of the brain.

Conclusion
In this study, the impact of brain region activity on one 
another for both healthy individuals and people with 
autism is investigated using the effective connectivity 
method  (GC). As noted, the research involved calculations 
based on data from 9 individuals with autism and 7 healthy 
individuals, encompassing 124 channels recorded at a 
frequency of 256 Hz.

After normalizing the data and removing destructive 
channels as part of the preprocessing, the application of 
VAR models and a composite index like the GC index 
in the time domain enabled the evaluation of changes in 
brain connectivity among the participants. Following 
VAR modeling for channel pairs, the GC value for each 
model was calculated using the noise variance calculation 
method outlined in Formula 4. The GC index quantifies the 
influence of one brain channel on another.

Given the similarities between both groups in the range 
of 0–0.05 and the differences beyond 0.05, a threshold of 
0.05 was established. For each dataset, an Excel file was 
generated containing the results for 124 channels. Essentially, 
there are 124  ×  124 values representing the causal and 
unidirectional communication from row channels to column 
channels. Considering the channels’ independence in 
effective connectivity, the principal diagonal  –  representing 
each channel’s self‑connection – is set to zero. Furthermore, 
in accordance with the GC threshold, values  <0.05 are 
also zeroed in the matrix. Subsequent analysis of the left 
and right hemispheres revealed that the causal interactions 
between these hemispheres are significantly lower in healthy 
individuals compared to those with autism.
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