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Calculation of Organ Dose Distribution (in-field and Out-of-field) in Breast
Cancer Radiotherapy on RANDO Phantom Using GEANT4 Application for

Tomographic Emission (Gate) Monte Carlo Simulation

Abstract

Introduction: Organ dose distribution calculation in radiotherapy and knowledge about its side effects
in cancer etiology is the most concern for medical physicists. Calculation of organ dose distribution
for breast cancer treatment plans with Monte Carlo (MC) simulation is the main goal of this study.
Materials and Methods: Elekta Precise linear accelerator (LINAC) photon mode was simulated
and verified using the GEANT4 application for tomographic emission. Eight different radiotherapy
treatment plans on RANDO’s phantom left breast were produced with the ISOgray treatment planning
system (TPS). The simulated plans verified photon dose distribution in clinical tumor volume (CTV)
with TPS dose volume histogram (DVH) and gamma index tools. To verify photon dose distribution
in out-of-field organs, the point dose measurement results were compared with the same point doses
in the MC simulation. Eventually, the DVHs for out-of-field organs that were extracted from the
TPS and MC simulation were compared. Results: Based on the implementation of gamma index
tools with 2%/2 mm criteria, the simulated LINAC output demonstrated high agreement with the
experimental measurements. Plan simulation for in-field and out-of-field organs had an acceptable
agreement with TPS and experimental measurement, respectively. There was a difference between
DVHs extracted from the TPS and MC simulation for out-of-field organs in low-dose parts. This
difference is due to the inability of the TPS to calculate dose distribution in out-of-field organs.
Conclusion and Discussion: Based on the results, it was concluded that the treatment plans with the
MC simulation have a high accuracy for the calculation of out-of-field dose distribution and could
play a significant role in evaluating the important role of dose distribution for second primary cancer
estimation.
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simulation are used to measure organ doses.
TPS calculates the in-field (target volume)
dose distribution accurately but the calculation
does not have enough accuracy for organ
dose distribution that is outside the target
volume.'”!7 Experimental ~measurements
can be used only on the standard phantoms
with passive dosimeters.'>!%?2  Several
authors have measured doses of in-field and
out-of-field organs in physical phantoms
with passive detectors and compared their
results with the TPS results.®!22121 A]l the
investigators reported that the TPS cannot
calculate the out-of-field dose accurately and
the gold standard method to estimate this
dose is MC simulation based on a patient’s
DICOM data or wusing computational
phantom.['21726291 Bednarz et al.,*%) Joosten

Introduction

Radiation-induced second cancer is an
important radiation therapy; late effect is a
major concern and several studies have been
conducted to study this phenomenon.["!' One
of the important parameters for modeling
and estimating the risk of radiation-induced
second cancer is dose distribution in
organs that are out-of-field of radiation
treatment, i.e. outside the target volume.
This dose could be due to radiation
leakage from the head of the medical linear
accelerator (LINAC), scatter from the beam
collimators, and scatter within the patient.['”

The treatment planning system (TPS),
experimental dosimetry in a standard
phantom, and Monte Carlo (MC) calculations
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et al "% Berris et al.,” and Wang and Ding (2014)3%
evaluated the out-of-field dose calculated by different TPS
and used the MC simulation to estimate the uncertainties
of calculated organ doses. However, these studies did not
compare the in-field dose distribution to verify the primary
treatment plan simulations and did not report the dose
volume histograms (DVHs) for the organs (in-field and
out-of-field) in their studies.

The specific goals of the current study are to calculate and
compare the dose distribution for in-field and out-of-field
organs for breast cancer patients treated with conformal
radiation therapy techniques for eight different treatment
planes and two different photon energies. The in-field dose
distribution was calculated with the TPS and MC simulation
while the out-of-field dose distribution was measured and
calculated with thermoluminescent dosimeters (TLDs)
and MC simulation, respectively. To calculate the dose
distribution, the prescribed dose was delivered to the
isocenter point based on the calculated monitor unit (MU)
of the TPS for each field. This approach has not been used
in previous studies.

Materials and Methods

The study was performed on a RANDO phantom, and
therefore, did not need ethical approval.

LINAC modeling and verification of model

The Elekta Precise LINAC (Stockholm, Sweden)
photon mode (energy 6 MV and 15 MV) was simulated
with GEANT4 application for tomographic emission
(GATE) (version 7.2, Gate Collaboration, Lyon, France)
MC simulation. Verification of the LINAC was done in two
steps: (1) determining the energy spectrum of the electron
source and (2) calculating the percentage depth dose (PDD)
and dose profile in 10-cm depth for three different
fields (6 x 6, 10 x 10, and 20 cm x 20 cm).

Percentage depth dose and dose profile from experimental
measurement

Experimental data were measured with a
Wellhofer-Scanditronix ~ dosimetry system (Wellhofer,
Uppsala, Sweden) and a water phantom with a

50 cm x 50 cm x 50 cm dimension (RFA-300; IBA
Dosimetry GmbH, Schuarzenbruck, Germany). PDDs and
dose profiles in 10 cm depth were measured for three
different field sizes in Wellhofer-Scanditronix’s water
phantom.

Determining the energy spectrum of the electron source

Finding the energy spectrum for both energies (6 and 15 MV)
based on the build-up region in the central axis of the
reference field (10 cm x 10 cm) on PDD and dose profile
was the first step after modeling the geometry. In regard
to the LINAC experimental data, the energy spectrum for
both nominal energies was determined using the standard

2

procedure of comparing the measured PDD and the
calculated PDD.

Calculating percentage depth dose and dose profile in
10-centimeter depth for three different fields

To perform dose calculations in a water phantom within
the simulation code, the same condition of experimental
measurement was written in codes. The output of GATE
codes was read with MATLAB software (version 2016,
MathWorks, California, U.S.) and the data were extracted.
To accomplish a good agreement and reduce the uncertainty
in water phantom voxels, the codes were run in two steps.
Step 1: 3 x 10® particles were run from the electron source
to have at least 10® particles on the phase space volume. Step
2: for the codes without wedge, 2 x 10" particles and for
the codes with wedge, 4 x 10! particles were run from the
phase space to reduce the uncertainty in the phantom voxels
and fluctuation in profiles. The results were compared with
experimental measurements using the gamma index with
2%/2 mm criteria.

RANDO phantom in Monte Carlo simulation of treatment
plans

Treatment plans on RANDO phantom with the treatment
planning system

To estimate and compare the organ’s dose distributions
(in-field and out-of-field), RANDO Alderson phantom
computed tomography images imported to ISOgray TPS
(version 4.2.3.50 L, DosiSoft, Paris, France) in the previous
study,®"’ were used. In the previous study, the authors
produced eight different plans [Table 1] on the phantom’s
left breast in two techniques (conformal techniques in the
presence of a dedicated shield [conventional] or multi-leaf
collimator [MLC]) and two different photon energies
(6 and 15 MYV). Planning involved contouring of 15
organs at risk (OAR) (left and right breast, right and left
lenses, thyroid, right and left lung, right and left kidney,
spinal cord, heart and liver, bladder, rectum, uterus) by the
radiation oncologist on DICOM images in the TPS. The
treatment plans were produced for 6MV and 15 MV photon
beams using conformal radiation therapy techniques in the
presence of dedicated shield or MLC, for two opposed
tangential fields and two opposed tangential fields plus
supraclavicular and postaxial fields.’Y) The prescribed dose
was 50 Gy in 25 fractions prescribed to the isocenter.

Simulation of treatment plans on RANDO phantom with
Monte Carlo

The same plans were simulated with GATE. The phantom’s
DICOMs were converted to interfile (h33 and 133 files)
format with (X) Med-Con software (version 0.14.1, Erick
Nolf, Ghent University Hospital, Ghent, Belgium) and MC
codes were prepared to read the phantom files. All details
of plans were modeled in MC codes. The programs were
run in two steps and the voxel size for the phantom was
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selected as 3 mm X 3 mm x 3 mm. In regard to the Elekta
LINACs universal wedge with 60°, for treatment fields
on plans with a lower degree of the wedge on the beam
way, two separate programs were written and run (with and
without wedge).

Comparison between treatment planning system and
GEANT4 application for tomographic emission Monte Carlo
simulation for in-field dose verification

The programs for different fields of each plan were run
for 5 x 10" particles and radiation dose distribution in
organs was calculated. The dose uncertainty for all fields in
eight plans was <0.7% and 2% in in-field and out-of-field,
respectively. The results for different fields of each plan
obtained from MC simulation were added with MATLAB
and then normalized to the prescribed dose voxel. The
weight for each field was applied based on the MU.

To have the real dose distribution in plans, for all
normalized dose distribution matrixes obtained from
simulation, total matrix doses were multiplied to a specific
registered number for each treatment plan to have the
acceptable dose distribution (95% of the volume received
95% of the prescribed dose) inside the CTV. According
to this dose distribution in CTV, dose distribution to the
other organs could be estimated. The normalized matrixes
of doses calculated with MC code and the TPS were
evaluated with a three-dimensional (3D) gamma index
MATLAB m-file.’? The comparison was done inside
the treatment fields based on two points as follows: (1) a
mask was designed with MATLAB m-file to compare the
in-field dose distribution (the area that received at least 40%
of the prescribed dose). The defined area is greater than
the CTV; (2) due to the difference in the dose calculation
algorithm in the TPS and MC simulation, with knowledge
of the complexity of the breast cancer treatment fields, the
authors selected 3%/3 mm to 6%/6 mm gamma index criteria
for dose difference (DD) and distance to agreement (DTA).

To calculate and compare the DVHs for the TPS and MC
simulation dose distributions, a 3DSlicer (version 4.10.0,
Brigham and Women’s Hospital, Boston, MA, USA)™I
was used. In the first step, to calculate the dose distribution
with 3DSlicer, the same techniques done with MATLAB
were used with a simple filters’ module (The Shift Scale
Image Filter and Add Image Filter) in the RTSlicer
extension of this software. This was followed by the use
of the DVH comparison module in 3DSlicer was used
to draw the DVHs for both the MC simulation and the
TPS. To achieve this, the software needs the radiotherapy
computed tomography (RTCT), RT structure, and dose
distribution (RT dose). The DD and DTA criteria for CTVs’
DVH comparison with the 3DSlicer were selected to be 1%
and 1 mm, respectively.
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Out-of-field photon dose distribution verification

To verify the photon dose distribution for the out-of-field
treatment volumes, measured point doses reported in the
previous study®!! were used.

Comparison between point dose measurement and Monte
Carlo simulation results

The point doses were measured with TLD chips (MTS 700,
TLD Poland, Krakow, Poland) in 48 points and 13 OAR.
The RTCT, RT structure, and MC dose distribution 3D
matrix files were uploaded and overlaid with the 3DSlicer.
According to this overlay, the MC simulation point dose
results were compared with the same measurement point
dose results and report.

Comparison between treatment planning system and Monte
Carlo simulation dose volume histograms for out-of-field
organs

Based on the knowledge that the TPSs do not have
enough accuracy for dose distribution calculation in
out-of-field organs,['>!”) as the last step in this study,
the out-of-field organs DVHs were compared. These
DVHs were extracted from TPS and MC simulation dose
distributions and comparisons were done with MATLAB
and 3DSlicer.

Results
Linear accelerator modeling and model verification

Figure 1 illustrates the components’ schematic diagram of
the LINAC head for both energies. The PDDs and the dose
profiles were drawn at 10-cm depth for three different field
sizes in two-photon energies with and without wedge which
were calculated and measured with MC and experimental
measurement, respectively. We have only presented the
PDD and the dose profiles of the MC simulation results
for reference field size in two-photon energies, with and
without wedge [Figure 2].

The initial electron source for both nominal energies
had a Gaussian distribution with a mean energy of 6.25
MeV and 14.9 MeV, respectively. The full width at half
maximum (FWHM) for 6 MV was 3.3% (0.2083 MeV)
with a spatial distribution on the central axis modeled by
a Gaussian function with 0.8° FWHM. Nevertheless, for
15 MV, Gaussian energy distributions had a half width at
half maximum of 4 MeV in the minimum direction and
its spatial distribution at the central axis was 0.2 cm. The
nominal energy with the above parameters in MC has a
good agreement with experimental measurements according
to the gamma index calculation with 2%/2 mm criteria
for all field sizes. The uncertainty for all voxels used to
estimate PDDs and dose profiles was <2%.
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Figure 1: A schematic geometry of Elekta Precise LINAC head: (a) 6 MV, (b) 15 MV

RANDO phantom in Monte Carlo simulation of
treatment plans

In regard to comparing the normalized dose distribution
for the TPS and MC simulation with gamma index tools,
more than 90% of voxels will pass the gamma index test
with 6%/4 mm criteria for all plans. The gamma index
results for different criteria are written in Table 2. These
criteria are acceptable for the following reasons: (1) MC
codes are more precise than TPS and different algorithms
in TPS will affect the dose distribution, and (2) Treatment
plans for breast cancer are one of the most complicated
plans in radiotherapy that have inhomogeneity and different
interfaces with air and bones in the thorax. Therefore,
having more DD and DTA criteria in the gamma index
would be acceptable. The gamma index results (with
4%/4 mm criteria) for one slice of different plans were
plotted with MATLAB [Figures 3 and 4].

CTV DVHs for all eight plans in two energies and four
techniques (6 and 15 MV) are depicted in Figures 5 and
6, respectively. Following Figures 5 and 6 and Table 3
which represented the properties of CTV DVH such as
average, maximum, minimum dose, and Dys,, for 6 and 15
MYV photon mode energies are reported. Table 3 compares
the parameters for MC and TPS CTVs DVH results in four
treatment plans.

Out-of-field photon dose distribution verification

The results of point doses in MC simulation dose
distribution extracted from the 3DSlicer and the DD
between point dose measurementB!! and MC simulation
results are tabulated in Tables 4 and 5, respectively.

The numbers in Table 4 show the mean and standard
deviation based on 50 Gy in 25 fractions (2 Gy per
fraction). After passing the criteria, the DVHs for all the
organs that were initially contoured plus the right and left
femur were calculated and compared with the TPS” DVHs.
To reduce the number of figures in the article, the heart and
left lung for all eight plans (6 and 15 MV) are depicted in
Figures 7-10, respectively. As shown in these figures, the
low dose part of DVHs was illustrated to demonstrate the
results more accurately. This type of illustration of DVHs
was extracted from Joosten et al.l'

Discussion
LINAC modeling and verification of model

According to Figure 2, the simulation has a high agreement
with experimental measurement results even in the build-up
region. Although the value of the gamma index is >1 at
several points in the dose profiles penumbra region, the
number of these points is limited. Based on PDDs and dose
profile results, the LINAC model was verified and the code
is ready for the other steps.

Journal of Medical Signals & Sensors | Volume 14 | Issue 6 | June 2024
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Figure 2: (2-1) Reference field size (10 cm x 10 cm), (a,) percentage depth dose (PDD), 6 MV, without wedge, (a,) Dose profile, 6MV, without wedge, (b,)
PDD, 6 MV, with wedge, (b,) Dose profile, 6MV, without wedge. (2-2) Reference field size (10 cm x 10 cm), (c,) PDD, 15 MV, without wedge, (c,) Dose profile,
15 MV, without wedge, (d,) PDD, 15 MV, with wedge, (d,) Dose profile, 15 MV, with wedge. PDD: Percentage depth dose

RANDO phantom in Monte Carlo simulation of treatment
plans

Since the TPSs are used different algorithms for dose
calculation and the different studies’ results show that the
dose distribution calculation with MC simulation is more
precise than the TPSs and even in some cases, TPSs have
overestimated the dose distribution,?*31 therefore, the
gamma index criteria are evaluated for criteria which are
bigger than 3%/3 mm. On the other hand, the 3%/3 mm

Journal of Medical Signals & Sensors | Volume 14 | Issue 6 | June 2024

criteria and smaller ones were recommended for
comparing MC results and experimental measurement, not
for treatment plan verification which is more complicated
in dose calculation algorithms, patient setups such as the
gantry, collimator, and table angles, and the presence of
wedge and shield in treatment field. The presence of each
one alone can cause more differences in dose distribution
calculations. In addition to the explained reasons, the
authors know that in patients with breast cancer, the
target tissue for radiation therapy and the planning
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Table 2: Gamma index results for different plans with 6 and 15 MV energy

Energy Technique Gamma criteria
3%, 3 mm 6%, 3 mm 6%, 4 mm 6%, 5 mm 6%, 6 mm

15 MV Conformal 76.43 82.91 90.13 94.93 98.64
Conventional 80.60 86.47 92.93 96.88 99.12
Conformal + supra 77.58 87.75 96.25 98.86 99.36
Conventional + supra 84.50 90.49 96.46 99.25 99.97

6 MV Conformal 82.49 87.12 93.11 96.17 98.21
Conventional 85.11 90.63 95.16 97.58 99.16
Conformal + supra 77.66 83.02 89.77 93.63 95.52
Conventional + supra 79.79 86.07 93.10 95.97 97.08

Table 3: Clinical tumor volume’s dose volume histogram properties for 6 MV and 15 MV photon mode energies,
Monte Carlo and treatment planning system dose calculation methods and four treatment plans

Dose (Gy) Technique Energy
6 MV 15 MV

Average Minimum Maximum D, Average Minimum Maximum D,
Conventional (2 tang) TPS 50.31 0.00 56.82 43.3 52.98 0.00 56.89 44.50
MC 50.61 18.34 55.58 45.10 52.77 19.78 58.13 42.90
Conventional (2 tang + axilla) TPS 50.11 0.00 55.63 43.50 53.59 0.00 58.85 45.10
MC 50.04 14.77 55.10 43.90 53.41 7.25 60.04 42.10
Conformal (2 tang) TPS 50.65 0.00 56.58 44.80 53.97 0.00 58.20 45.00
MC 50.77 3.35 56.32 44.30 53.68 5.19 59.54 42.50
Conformal (2 tang + axilla) TPS 49.76 0.00 53.91 44.00 53.97 0.00 58.86 45.10
MC 49.90 16.65 55.50 44.30 54.16 7.02 59.50 43.20

TPS — Treatment planning system; MC — Monte Carlo

/0 treatment field
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C

Gamma function distribution results in isocenter
, conformal radiotherapy with

Gamma function distribution results in isocenter
CrO! , conventional radiotherapy with

Gamma function distribution results in isocenter cross

section, conformal radiotherapy with

two treatment field

Gamma function distribution results in isocenter cross
section, conventional radiotherapy with
energy, two treatment field

Figure 3: Gamma function distribution results in the cross-section of isocenter in the treatment planes with two treatment fields: (a) Conformal technique
with 6 MV, (b) Conformal technique with 15 MV, (c) Conventional technique with 6 MV, (d) Conventional technique with 15 MV
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target volume (PTV), unlike the other tumors such as
the prostate and rectum that are located in the center
of the body, is located at the edge of the body surface.
Therefore, the treatment planning is more difficult and the
uncertainties in dose calculation on the side of the PTV
decreased.

Figures 3 and 4 demonstrate that the maximum differences
are related to the edge of the body surface, the treatment
field, or the edge of the shield. At the end of this stage, the
CTV DVHs for all plans were calculated with 3DSlicer and
compared with TPS DVHs. As indicated in Figures 5 and 6,
the CTV DVHs for all eight plans in two energies and four
techniques (6 and 15 MV) have a high agreement.

Out-of-field photon dose distribution verification

In the last step, the MC simulation for out-of-field point
doses and OARs DVHs were compared with the previous
study®) TLDs results and TPS’s DVHs, respectively. The
MC simulation results in Table 4 verified the experimental
measurement results in the previous study.’! Table 4
indicates that the point doses in close organs are more than
in the far organs. This table proves that 15 MV photon
compared to the 6 MV photon energy penetrates more
and has less scatter radiation. Due to the wide treatment
plans in conventional plans (conformal in the presence
of a dedicated shield) compared to the conformal plans,
point doses in these plans are more than in the conformal
plans. However, MLC in conformal plans or wedge in
conventional plans caused more scatter radiation which
affected in results. Table 4 expresses the same result
discussed in the previous study about the experimental
measurement.?!) They will not be repeated to shorten the
article.

As demonstrated in Table 5, 83.33% of out-of-field point
doses have a difference of <5%, 4.9% of out-field point
doses have a difference bigger than 7%, and the maximum
difference between MC out-of-field point dose and TLD
results was 9.79%. This difference could be due to the
comparison of the average point dose measured with the
average point dose of several voxels at the dosimeter
position in the phantom. For extracting the point dose in
phantom, an average of the dose for several points is taken
in the position of the TLD, so this causes the difference to
be less and even more in some points. On the other hand,
all measuring methods and tools have their own systematic
and statistical errors, and TLDs are no exception to this
rule.

The results of the experimental and simulation dosimetry
point doses are comparable to the results which were
presented in Berris et al. study.’” In the Berris research
Table 2, the average dose received to the out-of-field
organs for two different field sizes of breast cancer with
two tangent fields was reported, and these average doses
are comparable with the average dose received to the

9
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Table 5: The dose difference between point dose measurement in the previous article®"! and Monte Carlo results

Techniques Energy
organs 6 MV 15 MV
Conventional Conformal Conventional Conformal (2 Conventional Conformal Conventional Conformal (2
(2 tang) (2 tang) (2 tang + axilla) tang + axilla) (2 tang) (2 tang) (2 tang + axilla) tang + axilla)
Left lens 4.18 0.39 0.23 5.77 5.90 6.03 1.53 0.15
Right lens 0.76 5.27 0.19 1.26 0.14 0.73 5.25 1.73
Thyroid 7.21 243 0.86 0.22 0.50 4.51 2.87 0.12
1.03 9.08 1.62 0.91 0.19 2.29 7.03 5.27
Left lung 3.36 6.52 0.56 0.48 1.30 3.49 3.78 8.70
0.00 6.08 0.03 0.40 0.02 2.58 0.56 0.32
0.00 5.40 0.11 1.05 5.16 3.24 1.06 0.11
3.90 0.22 0.86 1.09 0.45 0.11 0.76 0.18
3.13 1.00 0.48 0.35 0.25 1.81 0.68 1.08
Right lung 4.24 7.64 0.14 2.13 5.25 1.73 0.30 1.31
3.99 7.08 0.09 0.72 0.28 2.79 1.32 0.30
4.54 9.30 2.48 0.86 0.0 1.22 0.31 1.72
3.74 1.95 1.36 0.82 1.97 0.07 0.38 1.34
8.96 0.93 0.16 1.46 0.63 1.93 0.13 2.10
Spinal cord 0.32 0.99 7.93 0.18 2.85 2.58 2.27 0.24
3.92 3.38 0.14 0.58 0.84 1.77 3.96 0.86
5.79 4.89 0.07 2.72 2.56 5.77 1.57 9.29
5.13 3.97 3.99 0.83 3.57 6.23 1.25 0.35
3.81 0.13 0.57 1.56 7.13 5.88 1.96 0.07
1.03 3.98 0.23 0.59 4.96 3.86 1.26 2.46
Heart 1.23 1.36 0.27 0.54 1.19 0.04 2.31 1.57
1.24 0.29 0.17 0.71 0.46 0.48 1.74 0.03
0.87 1.48 0.34 0.20 3.34 0.87 0.13 0.01
0.05 0.62 0.03 0.15 1.81 0.71 1.64 0.35
1.06 0.19 0.33 0.31 0.02 0.44 0.15 0.07
1.13 1.00 7.31 5.71 0.48 0.41 0.88 2.46
Liver 3.87 0.01 1.20 1.79 1.41 0.64 0.09 0.95
3.01 2.07 2.16 1.59 0.02 0.99 0.33 0.41
2.16 1.49 0.54 0.46 1.44 0.57 0.62 1.80
0.61 1.76 0.46 1.84 1.02 0.85 1.09 0.62
1.26 1.77 0.86 0.08 4.43 1.58 3.02 2.33
Right 0.86 1.64 2.25 8.11 5.08 0.01 3.86 2.40
kidney 0.17 1.34 1.73 0.47 0.27 241 1.29 0.92
2.81 1.85 1.99 348 0.89 0.16 0.18 5.08
Left kidney 5.70 4.07 0.33 1.19 2.33 5.86 343 2.57
3.50 2.57 1.03 0.08 3.66 0.04 3.63 3.55
0.25 1.12 0.72 1.51 0.89 8.68 3.45 1.47
Rectum 2.61 2.85 7.49 0.75 1.20 8.98 5.32 6.80
1.72 0.60 2.72 5.80 9.79 1.30 6.15 4.57
Bladder 0.40 3.63 4.84 2.58 5.24 0.20 4.27 2.95
4.89 9.15 5.89 6.72 6.67 3.16 4.05 4.26
6.59 1.64 2.03 3.70 2.74 0.84 4.05 0.82
1.05 3.63 1.61 5.63 4.00 0.30 3.56 4.69
Uterine 2.10 1.89 1.68 8.45 1.37 4.17 0.21 2.86
0.4 0.74 0.13 1.92 1.84 2.23 5.47 5.97
4.40 0.18 5.14 4.19 1.12 2.31 4.65 3.62

out-of-field organs of this study. As the results demonstrate, Based on the DVHs’ out-field organs, especially for the
the agreement between the results of the present study and organs which received high doses, there is a great agreement
the Berris et al. study is above 90%. between the TPS and MC simulation for doses above 20 Gy.

10 Journal of Medical Signals & Sensors | Volume 14 | Issue 6 | June 2024
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Figure 4: Gamma function distribution results in the cross-section of isocenter in the treatment planes with four treatment fields: (a) Conformal technique
with 6 MV, (b) Conformal technique with 15 MV, (c) Conventional technique with 6 MV, (d) Conventional technique with 15 MV
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Figure 5: Clinical tumor volume’s dose volume histograms comparison with Monte Carlo and treatment planning system for 6MV plans (a) Conformal
technique, (b) Conventional technique, (c) Conformal + supra technique, (d) Conventional + supra technique
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technique, (b) Conventional technique, (c) Conformal + supra technique, (d) Conventional + supra technique
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Figure 7: Heart’s dose volume histograms comparison with Monte Carlo and treatment planning system for 6MV plans (a) Conformal technique,
(b) Conventional technique, (c) Conformal + supra technique, (d) Conventional + supra technique

On the other hand, there is a slight difference and large
difference for doses between 5 and 20 Gy and <5 Gy (low
dose part), respectively. This difference reaches 70% for
the low-dose part. These differences in DVHs are due to

12

the inability of TPS to calculate out-of-field organ dose
distribution. The DVH’s characteristics for MC and TPS
results are presented for a better comparison in Table 3.
The results of different studies!'>'®?¢271 about the inability

Journal of Medical Signals & Sensors | Volume 14 | Issue 6 | June 2024
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Figure 8: Heart’s dose volume histograms comparison with Monte Carlo and treatment planning system for 15 MV plans (a) Conformal technique,
(b) Conventional technique, (c) Conformal + supra technique, (d) Conventional + supra technique
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Figure 9: Left lung’s dose volume histograms comparison with Monte Carlo and treatment planning system for 6MV plans (a) Conformal technique,
(b) Conventional technique, (c) Conformal + supra technique, (d) Conventional + supra technique

of the TPS for calculating the out-field dose confirm the
accuracy of this research results.

Another reason for observing this difference in dose
distribution between the TPS and MC simulation
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Figure 10: Left lung’s dose volume histograms comparison with Monte Carlo and treatment planning system for 6MV plans (a) Conformal technique, (b)
Conventional technique, (c) Conformal + supra technique, (d) Conventional + supra technique

calculation can be attributed to the scattered rays from the
LINAC head. In the TPS algorithm, the radiation scattering
caused by the patient is considered, while the scattering
caused by the LINAC head is not considered.'®! On the
other hand, in the MC simulation for the dose distribution
calculations electron contamination, the collimator leakage,
and the scattering due to the presence of wedges in the
field are considered, while they are usually not considered
in the TPS dose calculation algorithm, or it has a constant
value.l'®

Conclusion

The present study is an introduction to the risk calculation
of complications due to radiotherapy, especially in
secondary cancer research. One of the important factors
for risk estimation is 3D-dose distribution determination
in nontarget organs. Given that the TPS does not have the
required ability to calculate the accurate dose distribution
in out-of-field organs, the authors used MC simulation
as an accurate tool for calculating complex situations in
out-of-field organs in standard conditions.

Based on the authors’ knowledge, different studies have
been done to estimate the postradiation therapy risk
and even mathematical models have been written for
this calculation. However, in these studies, the average
dose distribution or equivalent organ dose was used to
calculate this risk and this causes a lower estimation. This
underestimation will be more in organs that are close to
the radiation field and a part of those organs receive a

high dose. In the present study, an attempt has been made
to calculate the 3D-dose distribution in the OAR, and by
using this 3D-dose distribution, it is possible to check
the possibility of postradiation therapy risk in the next
studies.
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