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Abstract
Background:  A significant number of frames captured by the wireless capsule endoscopy are 
involved with varying amounts of bubbles. Whereas different studies have considered bubbles as 
nonuseful agents due to the fact that they reduce the visualization quality of the small intestine 
mucosa, this research aims to develop a practical way of assessing the rheological capability of 
the circular bubbles as a suggestion for future clinical diagnostic purposes. Methods: From the 
Kvasir‑capsule endoscopy dataset, frames with varying levels of bubble engagements were chosen 
in two categories based on bubble size. Border reflections are present on the edges of round‑shaped 
bubbles in their boundaries, and in the frequency domain, high‑frequency bands correspond to these 
edges in the spatial domain. The first step is about high‑pass filtering of border reflections using 
wavelet transform (WT) and Differential of Gaussian, and the second step is related to applying the 
Fast Circlet Transform (FCT) and the Hough transform as circle detection tools on extracted borders 
and evaluating the distribution and abundance of all bubbles with the variety of radii. Results: 
Border’s extraction using WT as a preprocessing approach makes it easier for circle detection tool for 
better concentration on high‑frequency circular patterns. Consequently, applying FCT with predefined 
parameters can specify the variety and range of radius and the abundance for all bubbles in an image. 
The overall discrimination factor  (ODF) of 15.01, and 7.1 showing distinct bubble distributions in 
the gastrointestinal  (GI) tract. The discrimination in ODF from datasets 1–2 suggests a relationship 
between the rheological properties of bubbles and their coverage area plus their abundance, 
highlighting the WT and FCT performance in determining bubbles’ distributions for diagnostic 
objectives. Conclusion: The implementation of an object-oriented attitude in gastrointestinal analysis 
makes it intelligible for gastroenterologists to approximate the constituent features of intra-intestinal 
fluids. this can’t be evaluated until the bubbles are considered as non-useful agents. The obtained 
results from the datasets proved that the difference between the calculated ODF can be used as an 
indicator for the quality estimation of intraintestinal fluids’ rheological features like viscosity, which 
helps gastroenterologists evaluate the quality of patient digestion.
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Introduction
In recent years, wireless capsule 
endoscopy  (WCE) has rapidly developed 
as a novel technology for detecting 
gastrointestinal  (GI) diseases.[1‑3] The entire 
endoscopy examination usually lasts around 
6–8  h, and if WCE takes real‑time photos 
every 2 s, around 40–60 thousand frames 
will be generated. Due to the uncontrolled 
movements of the capsule through the GI 
tract, many frames with quality‑reducing 
agents appear in the WCE video, which 
can lead to misdiagnosis.[4] Although not 
all frames are helpful, bubble‑engaged 

ones with significant bubbles could contain 
useful information.

Aerated products include soap, crude oil, 
bread, beer, shaving cream, fire‑fighting 
foams, and polyurethane insulating 
materials. These products can be classified 
as either foams or having been foams 
during processing.[1] Foams, which 
consist of gas bubbles surrounded by 
a liquid matrix, exhibit intricate flow 
properties. Their behavior is characterized 
by non‑Newtonian and time‑dependent 
properties, along with apparent boundary 
slip effects and compressibility. Researchers 
conducted various studies to measure 
the distribution of bubble sizes in 
foams, aiming to assess the rheological 
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characteristics such as viscosity, stability, and draining. For 
example, viscosity, which is referred to the flow properties 
of foam, is influenced by the fluid properties and bubble 
geometry.[2] Higher viscosity can hinder bubble mobility 
and coalescence, causing smaller and more concentrated 
gas pockets. Conversely, lower viscosity enables bubbles to 
move and clump together more easily, resulting in larger 
and more scattered gas pockets and increases the mean size 
of bubbles.

Through various examinations, the distribution histogram 
and mean of measured radii for bubbles serve as indicators 
of the foam’s rheological properties.[1,2,5] Du et  al.’s 
research[6] highlighted the significance of bubble size in 
predicting protein separation and concentration in foam 
fractionation. Their work measures not only the interfacial 
area but also the coalescence of bubbles in foam. They 
present a photoelectric method that has been developed to 
measure the distribution of bubble sizes in both bubble and 
foam columns employed in protein concentration.

The rheological features of intraintestinal fluids, which 
are influenced by several factors, such as the composition 
of the mucus layer, the hydration status of the body, the 
presence of digestive enzymes and acids, and the activity 
of the intestinal epithelium, are a key factor in the number 
and size of created bubbles.[7] The effect of changing the 
rheological features in intraintestinal fluids is dependent 
on other factors, such as intestinal motility, luminal 
pressure, and bubble surface tension.[8‑11] Therefore, bubble 
specification can help analyze the rheological features of 
intraintestinal fluids near captured frames in WCE videos 
for digestive approaches.

The bubbles in the GI tract are mainly caused by the 
combination of intraintestinal fluids and the ingestion of 
air  (aerophagia) or the production of gas by the intestinal 
microbiota.[12] They are a combination of mucus, gas, bile, 
and come in quasi‑circular shapes and multiple sizes as 
shown in Figure 1, accounting for 20%–30% of all captured 
frames. Thus, they may be one of the agents containing 
important information that should be detected from WCE 
video frames to enhance the diagnostic process or assessing 
cleanliness and digestion processes.[13‑15]

Assessing and analyzing bubbles in the small bowel 
by humans is subjective and unreliable because of 

inaccessibility, but computer vision‑based algorithms can 
enhance accuracy and objectivity in measuring bubbles 
in WCE images.[13] There are several approaches for 
identification these agents: morphological approaches, 
texture‑based approaches, and color‑based approaches. 
The morphological approaches aim the unique structure 
of bubbles in the WCE images. Bubbles in WCE images 
were distinguished by the ring shape selective  (RSS) 
filters, which analyzed the bubbles’ morphological 
properties. The images underwent conversion to grayscale 
and then an RSS filter was applied to accentuate the 
bubble areas. Using an optimal threshold, the filtered 
image output was converted to a black‑and‑white image. 
Finally, by applying various morphological operations 
like erosion, scattered small regions were removed.[16] The 
Gabor filter’s potential to capture bubbles’ structure is 
another way of detecting them in these approaches.[17] The 
capability of identifying the circular texture of bubbles 
is evaluated in texture‑based approaches through 
computed techniques such as gray‑level of co‑occurrence 
matrix, fractal dimension, Hough transform  (HT), 
and Speeded‑Up Robust Features  (SURFs).[3] Another 
technique for detecting bubble frames with color 
features is through color‑based approaches. These works 
detected all bubble frames using a collaboration of 
local color histogram for colorful bubbles and Gauss–
Laguerre Transform, for noncolorful bubbles.[4,18] In 
another study, the bubbles’ color and texture features 
are extracted using the Color Local Binary Pattern 
algorithm with Discrete Cosine Transform.[19] Utilizing 
MPEG‑7 dominant color descriptor is another technique 
to analyze color and texture features of bubbles.[20] In 
another proposed system, utilizing a two‑stage system 
including identification and segmentation methods, 
initially, contaminated color frames were recognized by 
performing support vector machine  (SVM) classification 
that relied on color histogram training. Next, the 
bubble frames were identified using the SURF texture 
descriptor.[21] In the recent study of Sadeghi et  al.,[22] as 
part of the bubble boundary detection scheme, the sym10 
wavelet was used to highlight the bubble regions. In their 
wavelet‑based bubble edge detection trial, sym10 wavelet 
transform  (WT) was selected because it enhances the 
highlighting of bubble edges. In the LL, HL, LH, and 
HH subbands  (where L  =  low and H  =  high), the image 

Figure 1: Bubble-engaged image examples with different abundance, colors, and size of bubble: (a) Low-level engagement of bubbles, (b) Low-level 
abundance of circular bubbles, (c) High-level abundance of circular bubbles, (d) High-level engagement of bubbles
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was decomposed into four subbands in the first level. The 
original image was approximated by the LL subband, 
whereas the horizontal, vertical, and diagonal directions 
contain fine details in the other subbands. Then, the 
image’s edges were improved by eliminating the LL 
subband of the second level, and they restored the spatial 
representation using the other subbands. Finally, the most 
expressive edges were discovered through their method.

Texture and shape‑based methods were used to conduct 
multiple studies that aimed to exclude frames engaged 
with bubbles rather than evaluating them. The methods 
mentioned for detecting bubbles can only verify the presence 
of bubbles to classify the frame as a bubble‑contaminated 
frame for exclusion from the WCE video in the pathological 
aims or for assessing the GI’s cleanliness based on the total 
amount of bubbles for preparation paradigms. However, 
they do not offer positive insights into the circular patterns 
or size of the bubbles, whereas large bubbles may contain 
diagnostic regions, while small bubbles only reflect capsule 
light sources. Furthermore, the specification and separation 
of bubbles with different sizes from small to large can be 
a further crucial step in the estimation of intraintestinal 
fluids in WCE bubble‑engaged frames. On the other hand, 
bubbles have visible borders and reflective properties 
that enable the distinguishability of high‑frequency 
content. Frequency‑based transforms are practical for 
filtering high‑frequency contents, which are widely used 
in medical aspects for object detection.[23,24] To tackle the 
aforementioned challenges of conventional approaches, 
the potential of the Fast Circlet Transform  (FCT) as one 
of the frequency‑based transforms would be beneficial for 
identifying and separating circular bubbles from noncircular 
ones. FCT is a specific design of Wavelet and Curvelet 
Transforms that only capture the circular high‑frequency 
patterns in the image.[25,26]

In the current work, by employing different preprocessing 
and circle detection methods like FCT and HT, our goal 
is to distinguish and detect circular bubbles in capsule 
endoscopy images and estimate their coverage area and 
number in an object‑oriented manner. The method is 
presented as follows:
•	 Preprocessing
•	 Circle detection
•	 Bubble specification.

The paper’s outline begins with a description of the used 
dataset, preprocessing approaches in extracting bubble 
borders, and FCT’s performance on the preprocessed 
capsule endoscopy images with a predefined radius range 
and number of bubbles to be detected. Then, the coverage 
area and the abundance of bubbles for two different 
categories of bubble‑engaged images are calculated. 
Finally, our method in determining the bubble distributions 
and their statistical features is compared to Differential of 
Gaussian  (DoG) as a preprocessing method and the HT as 
a circle detection tool.

Materials and Methods
Datasets description

Dataset included capsule endoscopy bubble images 
which were selected from the Kvasir‑capsule dataset 
that is available for download.[27,28] Using the Olympus 
Endocapsule system, SBCE videos were recorded and the 
images were saved in PNG and JPG format with 336 × 336 
pixels resolution. The dataset we used consisted of 50 
small bowel capsule endoscopy images, taken from various 
subjects and video sequences of SBCE.

To create two sets of bubble‑engaged images, 25 images 
with small radius size were chosen for Dataset 1 and 25 
images with highest possible radius size for Dataset 2. 
Bubbles with a wide variety of colors, sizes, and quantities 
were authorized and included by three different specialists 
in the image sets through a careful selection.

Figure  1 displays a few bubble‑engaged images with 
varying degrees of contamination. In these frames, the 
surface of the mucosa cannot be visualized properly 
because it was covered with different amounts of air 
bubbles.

General Proposed framework

Bubbles can significantly reduce the visualization 
quality of the small bowel mucosa. Our main objective 
in this section was to find the best configuration of 
preprocessing and circle detector tools to evaluate the 
size and the number of circular bubbles in WCE frames 
for the discrimination of their distributions. Figure  2 
provides an illustration of the general framework of this 
study. Initially, the image was preprocessed to distinguish 
the borders of the bubbles from the background tissue by 
focusing on high‑frequency components. Following that, 
the circle detector tool was employed on the preprocessed 
image to determine bubble radii in an object‑oriented 
manner. All images in each dataset were treated through 
this process. Finally, the distribution of bubbles was 
analyzed by calculating the coverage area and abundance 
of bubbles to understand their rheological features.

Preprocessing

Typically appearing round or oval, bubbles can have smooth 
or irregular boundaries and vary in size and aspect ratios. 
Depending on lighting conditions and surrounding tissue 
reflection, bubbles can appear in a range of colors, but 
they are usually white or light gray  [Figure 1]. Identifying 
circular bubbles in capsule endoscopy video sequences 
could be an objective due to the diagnostic information 
they might contain. As bubbles are appeared in different 
shapes and aspect ratio, the response of frequency contents 
of bubbles varies. Bubbles that have a specific distribution 
of circular frequencies are crucial in FCT filters output. The 
reflection of capsule light emitters results in the reflection 
of borders appearing in a ring shape, which has diagnostic 
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information about the containing fluid. On the other hand, 
the bubble surface’s ability to reflect light leads to surface 
reflections. The effectiveness of the bubble texture on these 
reflections is influenced by the quantity and type of fluid 
or air inside, which can make it either smooth or slightly 
rough. To achieve these regions, the DoG method and the 
two‑dimensional discrete WT were used and the results 
were compared. In addition, using the morphological 
closing method, a ground truth mask is generated from 
the Otsu threshold image of each preprocessing method to 
assess the final results [Figure 3d].

Differential of Gaussian

The DoG technique is used in image processing to enhance 
image edges or gradients. The process entails subtracting 
one image with a higher blur level from another image with 
a lower blur level, achieved through the use of Gaussian 
filters with varying standard deviations. The image obtained 
highlights the areas where there are rapid changes in 
intensity, such as edges, corners, or blobs Figure 3b and c.[29]

Two‑dimensional discrete wavelet transform

Oscillating wave‑like functions called wavelets represent 
the mother wavelet in scaled and shifted versions.[30] 
An image can be decomposed into different frequency 
components at multiple resolutions using many wavelet 
filters.[31]

The bubble segmentation procedure was repeated to 
visually compare all candidates and determine the optimal 
mother wavelet function and wavelet decomposition level. 
To ascertain the best decomposition level and mother 
wavelet function, the experiment was conducted in two 
stages.

At the beginning of decomposition, the image is split into 
four subbands: LL, HL, LH, and HH subbands  (L  =  low, 
H = high) Figure 4b. The LL subband is an approximation 
of the original image, while the other subbands capture 
fine details in different directions. Only the approximation 
subband  (LL) undergoes further decomposition at each 
subsequent level in the higher level of decomposition.

Figure 2: General framework of proposed method
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Enhancing the edges of the image involves removing 
the LL subband from each level of decomposition and 
reconstructing the spatial representation using the remaining 
subbands [Figure 4c]. By using this method, the most 
expressive edges were found [Figure 4d]. The selection of 
Level 3 in our wavelet‑based bubble edge detection trial 
was based on its ability to highlight bubble edges more 
effectively.

Empirical results suggest that the “sym10” from the Symlets 
family is the most suitable mother wavelet function.

Finally, using the Otsu algorithm, all bubble regions were 
obtained in a binary image.

Circle detection

Hough transform

The HT is a technique for detecting incomplete and 
overlapping geometric shapes, like lines, ellipses, and 
circles, despite noise, using a voting procedure in the 
parameter space.[32]

The Canny edge detector can be used to detect prominent 
edges as a preprocessing stage.[33] The circular HT algorithm 
effectively detects highly radially symmetrical objects. 
The centroid coordinates and radius of circular patterns 
in an image can be obtained by utilizing a 3‑dimensional 
Hough search space. To locate circles of an unknown 
radius, a circular HT can search a triplet transform space 
using the circle center coordinates and radius range as 
dimensions.[3] In our circular Hough trial, radius values and 
center locations of bubbles have been calculated to compare 
the circle detectors’ performance with the other one.

The Fast Circlet Transform

Chauris et  al.[25] first introduced the FCT, which is a 
robust tool for circular object detection in an image. This 
method has the highest similarity either conceptually or 
practically in the Curvelet transform,[34,35] doesn’t need any 
segmentation methods, and doesn’t need image binarization 
accordingly. Using a series of fast Fourier transform, this 
method decomposes any f(x,y) gray‑scaled image into 
band‑limited circles called circlets with different radius 
in spatial domain and certain frequency contents in the 
frequency domain. Eqs. 1 and 2 indicate this decomposition 
in spatial domain with the associated amplitudes of Aλ:

( )f(x, y)= A .c x, y  Σ � (1)

( ) A =< f,c > = f(x, y).c x, y dxdy   ∫ ∫ � (2)

In the equations above, λ = (x0,y0,r0,f0) serves as a 
characterization parameter for each cλ, which represents the 
detected circlet with specific characteristics. These circlets 
are generated by modifying a basic circlet cref through shifts 
in position of centers  (x0,y0), changes in radius (r0), or the 
central frequency (f0). Eq. 3 shows the circlet function:

( ) ( )[2 ]   0 0c x, y = f r ‑ r � (3)

Where 2 2
0 0( ) ( )r = x ‑ x + y ‑ y  is radius of circlets and 

Ω is an oscillating function, such as wavelet function, 
to mirror the oscillating features of circular patterns in 
the frequency domain. The 1D filter banks or oscillating 
function  Fk(ω) oscillates between positive and negative 
values at different frequencies  (defined in Eq. 4) and used 
for creating the 2‑dimensional filter banks Gk(ω1,ω2) which 
represent circular patterns in the frequency domain:

( )
( ) ‑1k k

k

cos ± ;  ±                           
F = N

0; otherwise                              

 ≤



ω ω ω ω
ω � (4)

Where N is the number of band limited filters, k is 
a controlling parameter for frequency contents of 

circlets (k = 1,…, N), and 
( ‑1)
‑1


k

k=
N

ω

There are also two rules which are needed for reconstructing 
an image perfectly:

2 2
1 21 ( ) 1  Σ Σk k k k| F ( ) | = , | G , | = � (5)

The Fk(ω) along the circumference of a circle with 
a certain width creates the circlet function. To 
cover different radius range of circular patterns, 
a phase delay needs to be considered as  (6) with 

2 2
1 2 1 2( ) and= ,   | |= +ω ω ω ω ω ω :

( ) ( )i
k kG = e .F  ωω ω � (6)

In the Fourier domain, the distance of the frequency 
component from the origin is represented by the magnitude 
of the complex number |ω|. The term  i| |e  function is 
to adapt the oscillating function for detecting circular 
patterns at a specific radius of r0. By varying radius of r0 by 
  = 1,...,M (M is the total number of radii to be detected 
by FCT) in the Eq. 6, filters Gk(ω1,ω2) which act as the 
reference circlets, will be able to detect the objects with 
different sizes. The detected circles which are in frequency 
domain are obtained from Eq. 7:

( ) ( ) for{ 1 }and
{1 }

ˆ


ci< ,x >
lk k

0

c = e .G ,  k = , … ,N   
r =  = ,…,M  

ωω ω
� (7)

In the context of FCT, to detect circular patterns locally, the 
term ci< ,x >e ω  combines frequency content (ω)  and central 
position  (xc) in the Fourier domain with phase modulation. 
Capturing circular structures at specific positions, orientations, 
and scales is an essential part of the FCT process.

Focusing on bubbles is easier for the FCT by extracting 
bubble borders as high‑frequency components in the 
preprocessing stage. This allows segregation of only 
circular patterns from noncircular ones by applying FCT 
on extracted border regions. On the other hand, one of 
the main problems of FCT is false detection of bubbles. 
Overlapped circles  (O‑type circles) are the ones inside a 
bigger circle. There are also some conflict circles  (C‑type 
circles) that do not represent any meaningful circular 
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objects in an image. These kinds of detected circles affect 
the estimation of bubble distribution in the image, so they 
should be removed from the output of FCT.

False circle removal

To remove the unintentional circles for more accurate 
estimation of bubble distributions, we discarded any circles 
with centers closer than the largest radius. Moreover, the 
ground truth mask obtained during preprocessing was used 
to eliminate any bubbles detected outside the bubble region, 
resulting in the removal of all centers outside the ground 
truth mask. The total number of remaining bubbles, which 
represent their abundance, were only those within the 
bubble region of the ground truth image, with no additional 
circles inside, and can be derived from the Eq. 8:

ηt = N – η0 – ηc� (8)

Where the N is the total number of circles as an input 
parameter for FCT, η0 the number of O‑type circles, and ηc 
is the number of C‑type circles outside of the white regions 
in ground truth mask.

Bubble specification

This section represents all calculations related to the 
bubbles including automatic and semiautomatic methods, 
and it serves as a circular feature extractor of bubbles. 
The radius mean, dice similarity coefficient (DSC), area 
ratio (AR), and overall discrimination factor (ODF) are 
automatic evaluation metrics. The circularity patterns 
percentage (CPP) is a semi-automatic evaluation metric.

Semiautomatic evaluation metrics: Circularity patterns 
percentage

Visually assessable, the CPP validates detected circular 
bubbles against all bubbles including circular and 

noncircular ones. This value is calculated for the dataset j 
in the Eq. 9:

1Σ k ij
i=

ij
j

n
N

CPP =
k

� (9)

Where the i refers to each image, n ij is the visually truly 
detected circular bubbles by FCT, Nij is the total number 
of bubbles that are counted by specialists, and k is the total 
number of images in the dataset j. This value is the benchmark 
for evaluating the circle detector tool compared to the 
preprocessing approaches, so strong detection is very crucial 
in its measuring. By involving third‑party specialists to count 
the total number of bubbles in the image in the observatory 
and trial‑and‑error attempts by changing FCT parameters, the 
algorithm becomes semiautomatic and time‑consuming. This 
parameter, which is obtained by supervised calculations, will 
be used to compare to automatic evaluation metrics.

Regarding the experience of applying FCT as a software 
caliper on the preprocessed images of datasets with 
different trials on different radius ranges, and calculating 
radius histograms of detected bubbles  [Figure 5], an initial 
radius size (r0) of 5–30 with N = 50 has been chosen as an 
input parameter for FCT to compute automatic evaluation 
metrics.

Automatic evaluation metrics

The AR is a factor that assesses coverage of detected circles 
using FCT compared to the ground truth mask, particularly 
when precise overlap with ground truth is less significant 
than DSC. This value is derived from the Eq. 10:

1

( )
( )Σ k FCT

i=
groundtruth

j

Area i
Area i

AR =
k

� (10)

Figure 3: Extracting borders using Differential of Gaussian (DoG): (a) Original image, (b) DoG filtered image, (c) Otsu thresholding of filtered image, (d) Created 
mask using morphological closing

dcba

Figure 4: A decomposed image with three‑level “sym10” wavelet transform (WT). (a): Original image, (b): Three levels of decomposition in the two‑dimensional 
discrete WT, (c): Transform modified by zeroing the LL subband, (d): Reconstructed edge image
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Where the AreaFCT(i) is the white area of truly detected 
bubbles mask of the image i in the dataset j with k images, 
and Areagroundtruth(i) is for the ground truth mask.

The number of truly detected bubbles using FCT is 
related to AR through the evaluation method known 
as the ODF. Eq. 11 is used to calculate this value, 
which is important for the classification and scaling of 
bubble distributions based on their coverage area and 
abundance (ηt).

1

( )
( )

( )
Σ k FCT

ti=
groundtruth

j

Area i
 i ×

Area i
ODF =

k
� (11)

This value will not need initial supervision when it 
comes to comparison with CPPs. Therefore, if the input 
parameters are accurate, it can be a precise estimation of 
bubble distribution.

Implementation Results
This section represents the quantitative and qualitative 
diagnostic capability of FCT in finding bubbles.

Figure  6 depicts the false bubbles types and their removal 
after applying FCT as a postprocessing step.

Figure  7 shows the results of applying FCT on extracted 
borders of bubbles using the WT‑FCT based method.

Table  1 presents the statistical calculations of all detected 
radii for distinguishing detected bubbles across different 
datasets. The CPP  values were calculated for the best 
performance of the implemented methods for better 
comparison.

Figure 8 showcases the ODF metrics for different methods 
and highlights the best way to distinguish bubbles using the 
difference in overlapping standard deviations.

Evaluation of the Method Generalization 
Capability
To assess how the best‑proposed method works on new 
data, or how much it is generalized, we implemented a 
Repeated‑Stratified k‑fold cross‑validation  (with the number 
of repeats 6) and computed different classification metrics 
like accuracy, precision, specificity, recall  (sensitivity), and 
F1‑Score  [Table  2]. The dataset was divided into 3 folds 
where 2 folds were used to train the logistic regression, 
SVM, Naïve Bayes, and linear discriminant analysis as 
the classifiers. The remaining fold was used for testing the 
models and the procedure was repeated 6  times for better 
and balanced training of classifiers. Furthermore, to ensure a 
better comparison between artificial intelligence and machine 
learning methodologies, a straightforward multilayer 
perceptron network was utilized, featuring three primary 
layers  (64 and 32 neurons with RELU activation function 
in the first and second layers, and one neuron with sigmoid 
activation function in the third layer). Labeling of the dataset 
was based on CPP  values, where the large change between 
them was a good reference for labeling. Figure  9 provides 
the comparison of classifiers by the receiver operating 
characteristic curve and area under the curve.

Discussion
Our technique, which is based on the number and coverage 
of circular patterns in an object‑oriented level, enables us 
to estimate the overall distribution of bubbles automatically 
in two different size‑based WCE datasets using the FCT as 
a circle detector tool.

Our attitude differs from prior studies as it enables the 
detection and measurement of bubbles in every WCE 
frame, along with an approximation of their coverage 
area and abundance, in contrast to binary or multiclass 
classification on a frame‑by‑frame basis.

Figure  5: Histogram of detected initial radius range for wavelet‑based 
approach using Fast Circlet Transform

Figure 6: False circle removal: (a) Original image, (b) Initial detection of bubbles, (c) O‑type circle removal, (d) C‑type circle removal
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The quality of captured frames [Figure 7a] and detected 
border reflections greatly affects the performance of the 
circle detector in bubble detection and the creation of the 
ground truth mask [Figure 7c] through the preprocessing 
approach. Border reflections that are not strong and 
continuous enough against the regular tissue background 
can result in bubbles being missed in frames, because 

they do not share any circular patterns to be detected by 
circle detector tool. These reflections are predominantly 
observed in larger bubbles, resulting in a higher likelihood 
of missing their detection as high‑frequency components 
using the circle detector [Figure 7 dataset 2].

The uncontrollable and inappropriate lighting conditions in 
the endoscopic capsule rendered high‑pass filters like DoG 

Table 1: The quantitative distribution of detected bubbles for the Hough and Fast Circlet Transforms 
Mean AR DSC ODF CPP

HT
Preprocessing method: DoG
Dataset 1 8.5±3.95 0.3±0.06 0.3±0.05 6.74±3.13
Dataset 2 7.01±4.2 0.35±0.12 0.27±0.04 11.71±5

Preprocessing method: WT
Dataset 1 10.6±6.24 0.03±0.12 0.36±0.11 6.45±3.1
Dataset 2 6.87±1.8 0.26±0.11 0.24±0.6 6.25±4.02

FCT
Preprocessing method: DoG
Dataset 1 12.88±4.72 0.36±0.11 0.35±0.7 7.32±3.35
Dataset 2 9.00±7.42 0.3±0.17 0.17±0.06 2.78±2.28

Preprocessing method: WT
Dataset 1 13.41±5.22 0.47±0.98 0.57±0.61 15.01±3.66 88.44±8.25
Dataset 2 10.21±7.27 0.46±0.14 0.37±0.06 7.1±3.23 12.87±11.87

HT – Hough transform; FCT – Fast Circlet Transform; WT – Wavelet transform; DoG – Differential of Gaussian; AR – Area ratio; 
DSC – Dice similarity coefficient; ODF – Overall discrimination factor; CPP – Circularity patterns percentage

Figure 7: Use implementation results instead of the selected words: (a) Original RGB image occupied by bubbles with different varieties of radius size, (b) 
Extracted reflection borders by wavelet transform, (c) Ground truth mask, (d) Fast Circlet Transform (FCT) mask, (e) Detected bubbles using FCT

dcba e

Figure 8: Graph representation of overall discrimination factor metrics: (a) Fast Circlet Transform (FCT), (b) Comparison of Hough transform and FCT 
performance. DoG – Differential of Gaussian, FCT – Fast Circlet Transform, WT‑FCT – Wavelet transform FCT
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ineffective in detecting bubbles. The preprocessed image 
underwent the circle detection procedure like HT and FCT, 
and the accuracy of the identified bubbles  [Table  1] was 
assessed. There is a shared overlap of detected circles in the 
calculated standard deviations for some metrics in Table  1 
and Figure  8 across each method. The lower overlapping 
of ODFs indicates the more differentiating of bubbles in 
detection procedure. Due to the limitations of the DoG 
method in uniformly differentiating bubble borders, losing 
a substantial number of detections, and inaccurately 
estimating bubble sizes in datasets, wavelets proved to 
be a more effective preprocessing method by sharing the 
less overlapping of detected bubble sizes [Figure 8a]. 
Furthermore, the large overlapping of the calculated ODF’s 
standard deviations for DoG and HT implementation 
with 6.74  ±  3.13 for dataset 1 and 11.71  ±  5 for dataset 
2  [Figure 8b and Table 1] indicates the inability of the HT 
in discrimination of large bubbles from small ones.

By collaborating FCT and WT, the stronger bubbles can 
be discriminated based on their size of round reflections, 
allowing for an approximate estimation of bubble coverage 
area in each image  [Figure  7b and c]. According to 
Figure  7b and Table  1 for dataset 1, extracted borders 
produced stronger detection results by FCT due to the fact 
that they contain more continuous and circular patterns. 
Dataset 1 showed ODF results of 15.01  ±  3.66, while the 
second dataset had results of 7.1  ±  3.23. The absence of 
overlapping standard deviations allowed for more accurate 
bubble discrimination. This discrimination is decisive when 
compared to the significant discrimination of CPP  values 
as a reference measure  (88.44  ±  8.25 for dataset 1 and 
12.87 ± 11.87 for the second dataset).

The continuity and circularity of border reflections are reduced 
as the size of bubbles increases. Consequently, the decrease 
in continuity and circularity patterns of borders results in a 
decrease in the accuracy of circle detection tools, causing 
false detection of bubbles in terms of size and location. This 
issue is quantified by decreasing of AR and ODF of detected 
bubbles from dataset 1–2 in Table 1. Therefore, the lower AR 
and ODF is a factor of circle detector inability to find bubbles 
based on their border reflections. The AR and ODF values 
will be the maximum for small bubbles due to the fact that 
they share uniform circular reflections and higher frequency 
response for applying FCT.

The number of truly detected bubbles (ηt) as the abundance 
plays a critical role in distinguishing small bubbles from 
large ones in frame‑by‑frame rheological analysis. The 
significance of this problem increases when the FCT is 
incapable of isolating each bubble at the object‑oriented 
level, leading to inaccurate circle detection in the image. 
This causes false radius size and center locations for circles 
and consequently inaccurate calculation for all AR, ηt and 
ODF.

Our method improves the discrimination of bubbles and 
estimates their overall abundance by directly affecting ODF 
through AR and ηt, achieved by separating truly detected 
bubbles from C‑type and O‑type ones with the assistance 
of the ground truth mask [Eq. 11].

In the results of FCT implementation, the coverage area 
of detected bubbles [Figure 7d] and the truly detected 
number of bubbles  (ηt) are the important features that 
represent the rheological properties of bubbles and foams. 
Consequently, to achieve better understanding of bubbles’ 
properties, different distributions of bubbles’ radii in 
datasets are quantified by calculating the mean, AR, and 
ODF values for all coverage area of each bubble engaged 
frames  [Table  1], where bigger bubbles caused lower radii 
mean, lower AR and ODF, and small ones resulted higher 
AR, ODF, and higher mean radius.

These distributions indicate the existence of intraintestinal 
fluids in the frame with specific properties. The difference 
and discrimination of the calculated means and ODF as 
a function of AR and ηt between the datasets could be a 
good indicator of examining the rheological features of 
intraintestinal fluids like viscosity. Therefore, bubble 
specification can help analyze the rheological features of 
intraintestinal fluids near captured frames in WCE videos 
for digestive approaches.

By analyzing Figure 9 and Table 2, it is clear that there is a 
strong correlation between ODFs and CPPs, supporting the 
CPP usage as reference measures for evaluating automatic 
methods. By using our proposed method, we can distinguish 
the maximum number of circular patterns from noncircular 
ones and represent their distributions using ODF as a novel 
metric. The ODF’s calculation method is currently a novel 
automated measurement approach to CPP  values and is a 
viable option for use in the foam assessment field.

Table 2: Generalizability results of the presented method for the wavelet transform ‑ Fast Circlet Transform approach
Accuracy Precision Recall F1‑score Specificity

SVM 0.89±0.07 0.87±0.09 0.92±0.08 0.89±0.06 0.86±0.11
Logistic regression 0.89±0.06 0.88±0.08 0.92±0.08 0.9±0.06 0.87±0.09
NB 0.82±0.08 0.83±0.1 0.84±0.11 0.82±0.07 0.8±0.13
LDA 0.86±0.09 0.85±0.08 0.88±0.15 0.86±0.11 0.85±0.11
KNN 0.89±0.06 0.88±0.08 0.92±0.06 0.9±0.06 0.87±0.09
MLP 0.9±0.06 0.89±0.08 0.92±0.08 0.9±0.06 0.87±0.1
SVM – Support vector machine; NB – Naïve Bayes; LDA – Linear discriminant analysis; MLP – Multilayer perceptron; KNN – K-Nearest 
Neighbors
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Conclusions
This manuscript used the potential of circular features 
of bubbles and provides a quantitative and qualitative 
representation of overall bubble distributions in the WCE 
bubble‑engaged images as a proposed prerequisite step for 
future studies of intraintestinal properties. The collaboration 
of high‑pass filtering method like WTs and a circle 
detection tool like FCT provides a better understanding 
of bubble structures as high‑frequency components. 
Despite its success in detecting circles and capturing 
high‑frequency circular components, FCT’s weakness 
in detecting large bubbles and segregating individual 
bubbles in an object‑oriented manner poses a significant 
obstacle to accurate bubble estimation. Our method of 
determining the number of truly detected bubbles and using 
it as an evaluation factor (named ODF) made it possible to 
discriminate the bubbles based on their covering area (AR) 
and abundance (ηt).

The object‑oriented attitude toward bubbles makes it 
possible for them to be treated as useful agents in WCE 
images instead of contaminating agent assumption. 
The circularity features of bubbles provide a better 
understanding of the factors involving in creating bubbles. 
Therefore, evaluating the coverage area and abundance 
distributions in different GI parts or patients can assist 
gastroenterologists in achieving a more precise diagnosis 
based on the rheological features of intraintestinal fluids, 
ultimately aiding in evaluating patient digestion quality in 
future studies. This study, as a proposal for future studies, 
also requires more analysis to improve the results to reach 
the CPP results as a reference measure.
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