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Abstract
Background: Glioma is one of the most drug and radiation‑resistant tumors. Gliomas suffer from 
inter‑ and intratumor heterogeneity which makes the outcome of similar treatment protocols vary 
from patient to patient. This article is aimed to overview the potential imaging markers for individual 
diagnosis, prognosis, and treatment response prediction in malignant glioma. Furthermore, the 
correlation between imaging findings and biological and clinical information of glioma patients is 
reviewed. Materials and Methods: The search strategy in this study is to select related studies from 
scientific websites such as PubMed, Scopus, Google Scholar, and Web of Science published until 
2022. It comprised a combination of keywords such as Biomarkers, Diagnosis, Prognosis, Imaging 
techniques, and malignant glioma, according to Medical Subject Headings. Results: Some imaging 
parameters that are effective in glioma management include: ADC, FA, Ktrans, regional cerebral blood 
volume (rCBV), cerebral blood flow (CBF), ve, Cho/NAA and lactate/lipid ratios, intratumoral uptake 
of 18F‑FET (for diagnostic application), RD, ADC, ve, vp, K

trans, CBFT1, rCBV, tumor blood flow, Cho/
NAA, lactate/lipid, MI/Cho, uptakes of 18F‑FET, 11C‑MET, and 18F‑FLT (for prognostic and predictive 
application). Cerebral blood volume and Ktrans are related to molecular markers such as vascular 
endothelial growth factor (VEGF). Preoperative ADCmin value of GBM tumors is associated with 
O6‑methylguanine‑DNA methyltransferase (MGMT) promoter methylation status. 2‑hydroxyglutarate 
metabolite and dynamic 18F‑FDOPA positron emission tomography uptake are related to isocitrate 
dehydrogenase (IDH) mutations. Conclusion: Parameters including ADC, RD, FA, rCBV, Ktrans, 
vp, and uptake of 18F‑FET are useful for diagnosis, prognosis, and treatment response prediction 
in glioma. A significant correlation between molecular markers such as VEGF, MGMT, and IDH 
mutations with some diffusion and perfusion imaging parameters has been identified.
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Introduction
A glioma is a primary central nervous 
system malignancy in adults with 
poor prognosis.[1,2] Grades 1 and 2 are 
known as low‑grade glioma (LGG), and 
grades 3 and 4 are known as high‑grade 
glioma (HGG). Standard management 
of malignant glioma usually is surgery 
followed by concomitant and adjuvant 
chemotherapy with temozolomide (DNA 
alkylating agent).[3] The limitations in 
developing treatment management for 
glioblastoma include the presence of 
blood–brain barrier,[4] high resistance to 
radiation,[5] and abnormality of blood 
vessels which cause an undesirable and 
hypoxic microenvironment, thereby 
increasing radiation resistance and 

disrupting chemotherapy. Glioblastoma 
also comprises distinct cancer cells 
including stem cells, initiating cells, and 
propagating cells which are extremely 
resistant to typical chemo‑ and radiation 
therapy and can make severe tumor 
recurrence.[6]

GBM tumors suffer from inter‑ and 
intratumor heterogeneity.[4] Intratumor 
heterogeneity challenges tumor 
identification and progression of impressive 
and efficient treatments.[4]

Furthermore, early treatment evaluation 
is also tough for glioma patients. After 
completion of RT, the nontumoral 
increment in contrast‑enhancing lesion 
extent or pseudoprogression occurs in 
high‑grade brain tumor patients.[7] To 
discriminate between pseudoprogression 
and early progression of the disease by 
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conventional methods, patients should be followed for an 
extended time or alternative imaging techniques should be 
applied.[1] Quantitative evaluation of functional and metabolic 
alterations in tumor can be obtained using advanced 
imaging techniques including perfusion‑weighted imaging, 
proton magnetic resonance spectroscopy (1H‑MRS), and 
positron emission tomography (PET).[8] Using a biomarker, 
the effectiveness of a treatment protocol and its potential 
complications for each patient may be assessed. The 
purpose of this article is to overview the potential imaging 
markers for individual diagnosis, prognosis, and treatment 
response prediction in malignant glioma patients and 
correlation between imaging findings and biological and 
clinical information of glioma patients. The remainder 
of this article is organized as follows. After materials and 
methods section, imaging role in clinical management 
of glioma including diagnosis, prognosis, and treatment 
response prediction is given in sections “Diagnostic Imaging 
Techniques” and “Prognostic and Predictive information.” 
The advantages and disadvantages of the imaging modalities 
are summarized in Table 1. Next, in section “Correlation 
between Imaging Findings and Biological and Clinical 
Information of Glioma,” a brief overview of the correlation 
between imaging findings and biological and clinical 
information of glioma is presented.

Materials and Methods
The search strategy conducted in this study was to select 
relevant studies from scientific websites such as PubMed, 
Scopus, Google Scholar, and Web of Science published 
until 2022. It comprised a combination of main keywords 

such as Biomarkers, Diagnosis, Prognosis, Imaging 
techniques, and malignant glioma which were selected 
according to Medical Subject Headings.

The inclusion and exclusion criteria in this study were as 
follows: studies including books, reviews, and original 
articles investigated the use of imaging markers for diagnosis, 
prognosis, and treatment response prediction in glioma, as 
well as studies examined the relationship between these 
markers and biological markers were included in the study. 
The use of articles in the languages other than English, 
abstracts presented in the conferences, articles before final 
publication, letters, reports, technical reports, and articles 
related to other brain cancers were considered as the 
exclusion criteria. Table 2 summarizes some studies about 
the application of different medical imaging modalities in 
diagnosis, prognosis, and treatment response prediction of 
glioma.

Results
Diagnostic imaging techniques

Computed tomography

Computed tomography (CT) scan has been the main method 
of imaging for treatment planning in radiation oncology. 
However, in brain tissue, where most solid tumors and 
adjacent organs at risk (OARs) have similar electron 
densities, insufficient contrast in CT images can confuse 
the determination of target and OARs.[48] Therefore, it is 
necessary to use other imaging modalities and techniques 
as a complement to CT scan for its defects.[49]

Table 1: Imaging modalities and techniques used in diagnosis, prognosis, and treatment response prediction associated 
with glioma with some of their advantages and disadvantages

Imaging 
modality

Diffusion MRI Perfusion MRI MRS PET
DSC DCE ASL

Advantages Widespread 
availability, fast 
acquisition time 
without specialized 
hardware, detection 
of some pathological 
changes in its early 
stages[9]

Short acquisition 
time, easy 
analysis, high 
temporal 
resolution[10,11]

Higher spatial 
resolution than 
DSC, absolute 
measurements of 
plasma volume and 
Ktrans[11,12]

Noninvasive[13] Noninvasive, 3D 
evaluation of tumor 
heterogeneity 
(research 
application)[14]

Reproducibility 
due to the low 
half‑life of 
radiotracers, 
accurate 
quantitative 
measurements[12]

Disadvantages Low image quality 
(low SNR, limited 
spatial resolution, 
distortion, artifacts), 
overlap between 
ADCs of grade II 
astrocytomas and 
glioblastomas[9,15]

Indirect detection 
of the injected 
contrast material, 
susceptibility 
artifacts[11,12]

Indirect detection of 
the injected contrast 
material, needing 
high temporal 
resolution, needing 
an appropriate 
analysis model, not 
suitable for glioma 
with BBB disruption 
or vessel leakage[16,17]

Poor labeling 
efficiency, low 
SNR, high 
sensitivity 
to patient 
movement, 
needing 
standardization 
methods[12,18]

Technical problems 
such as differences 
in: acquisition 
techniques, 
calculation of 
metabolites ratio, 
and in volume 
averaging. limited 
spatial resolution, 
low SNR[19,20]

High costs 
of imaging, 
impossibility 
of using PET 
imaging in clinical 
emergencies, 
lack of anatomic 
information[12,21]

DSC – Dynamic susceptibility contrast; DCE – Dynamic contrast‑enhanced; ASL – Arterial spin labeling; MRI – Magnetic resonance imaging; 
MRS – Magnetic resonance spectroscopy, PET – Positron emission tomography; BBB – Blood–brain barrier; SNR – Signal‑to‑noise ratio; 
ADCs – Apparent diffusion coefficients; 3D – Three‑dimensional
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Magnetic resonance imaging

Standard sequences of magnetic resonance imaging

Magnetic resonance imaging (MRI) is used as the primary 
method of early diagnosis in glioma.[4] MRI sequences 
which are essential for glioma tumor visualization 
and provide important information before and 
during the tumor resection are pre‑ and postcontrast 
T1‑weighted and T2‑weighted fluid‑attenuated inversion 
recovery (T2‑FLAIR) sequences.[16,50] T1‑postcontrast 
imaging is very useful in detecting HGG.[16] T2‑FLAIR 
is more suitable for visualizing LGG and areas of edema 
and tumor spread outside the contrast‑enhancing areas 
on T1 sequences for HGG. Despite the advantage of 
using standard MRI sequences which has been supported 
by many studies,[16,51‑54] their use has some limitations 
in diagnosis of gliomas. For example, in some cases 
of GBM, T1‑postcontrast images show the absence or 
lack of enhancement.[16] In addition, T2 and FLAIR 
sequences are limited in distinguishing LGG from 
HGG.[16] Therefore, for characterizing glioma tumor 
more completely, it is necessary to use other imaging 
sequences and modalities.

Diffusion magnetic resonance imaging

In diffusion‑weighted imaging (DWI), the motion of water 
molecules and ultimately the magnetic resonance signal is 
affected by microstructural changes. Thus, using diffusion 
tensor imaging (DTI) to measure diffusion in several 
directions, the average molecular motion (ADC criterion) 
and information about the arrangement and integrity of 
cellular structures (fractional anisotropy [FA]) are also 
obtained.[2] In terms of application to brain tumors, FA 

shows the amount of anisotropy in each voxel (anisotropy 
is high in white matter and low in gray matter)[55] which 
can be used as a measure for degradation of healthy 
white matter.[2] Sugahara et al. evaluated the cellularity 
and grading of glioma using DW‑MRI with echo‐planar 
imaging technique and demonstrated that the minimum 
ADC of the tumor increases with increasing tumor grade 
and cellularity.[56] In diffusion imaging, it is possible 
to differentiate between the edema and the infiltrative 
tumor cells, the neoplastic areas from the abscess, and 
primary central nervous system lymphoma from HGG.[4,22] 
Furthermore, advanced sequences such as DTI can be 
utilized to exhibit the transposition of white matter tracts 
resulting from the existence of tumor.[4] Diffusion kurtosis 
imaging is an emerging diffusion technique that provides 
more information about tissue microstructural changes 
with higher sensitivity and accuracy than DWI and 
DTI.[57,58]

Perfusion magnetic resonance imaging

In perfusion techniques, blood is followed to the target 
tissue within the vascular system with or without 
an injected contrast agent.[12] Then, physiologic and 
hemodynamic data are measured and their relationship 
with the tumor biology can be obtained.[59,60] Perfusion 
imaging techniques that can be used for brain tumors 
include dynamic susceptibility contrast (DSC)‑MRI, 
dynamic contrast‑enhanced (DCE)‑MRI, arterial spin 
labeling (ASL)‑MRI, perfusion computed tomography, PET, 
and single‑photon emission computed tomography.[12,61,62] 
Some of the perfusion parameters include cerebral blood 
volume (CBV), regional CBV (rCBV), cerebral blood 
flow (CBF), permeability of blood vessels (Ktrans), volume 

Table 2: Some imaging modalities and techniques and their assessed parameters used in diagnosis, prognosis, and 
treatment response prediction of glioma

Application Modality Imaging techniques Assessed parameters Reference
Diagnostic Diffusion MRI DWI ADC [22‑24]

Perfusion MRI DCE CBV, Ktrans, ve [25‑27]
Perfusion MRI
Perfusion MRI
MRS

ASL
DSC

CBF
CBV, rCBV
Cho/NAA and lactate/lipid levels

[18,28]
[10,18,26‑28]

[19,29]
PET Intratumoral uptake of 18F‑FET [30,31]

Prognostic and 
treatment response 
prediction

Diffusion MRI RD, ADC value, and longitudinal DTI [32‑34]
Perfusion MRI
Perfusion MRI
Perfusion MRI

DCE
DSC
ASL

Ktrans, vp, ve, CBFT1

rCBV, CBF, EF
TBF

[35‑37]
[38,39]

[40]
MRS Cho/NAA, lactate/lipids, and MI/Cho ratios [41,42]
PET Intratumoral uptake of 18F‑FET, reduced 

uptake of 11C‑MET, 18FET, and 18F‑FLT
[43‑47]

MRI – Magnetic resonance imaging; MRS – Magnetic resonance spectroscopy, PET – Positron emission tomography; DWI – Diffusion‑weighted 
imaging; DCE – Dynamic contrast‑enhanced; ASL – Arterial spin labeling; DSC – Dynamic susceptibility contrast; MI – Myo‑inositol; 
TBF – Tumor blood flow; CBF – Cerebral blood flow; CBV – Cerebral blood volume; rCBV – Regional CBV; DTI – Diffusion tensor imaging; 
ADC – Apparent diffusion coefficient; 18F‑FET – 18F‑fluor‑ethyl‑tyrosine; 18F‑FLT – 18F‑fluorothymidine; 11C‑MET – L‑[methyl‑11C] methionine; 
NAA – N‑acetylaspartate; Cho – Choline; RD – Radial diffusivity; EF – Extraction fraction
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fraction of extravascular extracellular space (ve), and 
plasma volume per unit volume of tissue (vp).

[24,60]

Magnetic resonance perfusion imaging techniques 
including DSC, DCE, and ASL can be used to distinguish 
between high and low grades of glioma.[10,16,63] Studies 
have introduced CBV and rCBV as angiogenesis markers 
to distinguish HGG from LGG.[64‑66] In a meta‑analysis 
study by examining the performance of DCE and DSC 
imaging techniques in the diagnosis of glioma grade, 
it was concluded that these two techniques and their 
parameters including Ktrans, ve, rCBV, and CBF are reliable 
in differentiation between high‑ and low‑grade gliomas and 
rCBV is the best parameter for glioma characterization, 
preoperatively.[24] Ktrans is able to distinguish between 
Grade II, III, and IV gliomas.[26] HGGs have higher Ktrans 
than LGGs.[67,68] In addition, CBF parameter obtained from 
ASL technique is able to distinguish between LGG and 
HGG, if standardization methods are used in postprocessing 
algorithms to make the data reliable.[18]

There are more recent MRI techniques that are not widely 
used clinically and are able to distinguish LGG from 
HGG, e.g., intravoxel incoherent motion. In this technique, 
imaging is performed based on the diffusion and perfusion 
of tissue water molecules without the need to inject 
exogenous contrast.[69‑71]

Magnetic resonance spectroscopy

MRS offers information about biochemical changes in brain 
tissue by analyzing the concentration of metabolites. MRS 
can be used to distinguish normal brain tissue from tumor, 
glioma from noninfiltrative tumor such as metastases, and 
also to determine tumor grade.[49,72,73]

With increasing glioma grade, the amount of Cho and lipid 
increases, and in cases of metastasis, the amount of lipid 
is higher than in HGG cases.[29] MRS proton‑detectable 
metabolites such as Cho and NAA are probable biomarkers 
for tumor activity. Cho represents the metabolism of cellular 
membrane turnover function. NAA, as a neuronal density 
marker, decreases in tumors owing to the lack of neurons. 
GBM illustrates a growth in the ratio of Cho/NAA.[19,49,74,75] 
Furthermore, creatine (Cr) is a marker of normal cellular 
metabolism. Lactate, lipid, and myo‑inositol (MI) reflect 
hypoxia, necrosis, and astrocyte integrity, respectively.[19] 
It has shown a direct relationship between tumor grading 
and the ratios of Cho/NAA and Cho/Cr.[76‑79] Furthermore, 
an inverse relationship between the ratio of MI/Cr and 
tumor grading in cerebral astrocytoma patients has been 
concluded.[80] Ratios such as Cho/NAA and lactate/
lipid levels can be used to diagnose different intracranial 
tumor types and grades or distinct tumor recurrence from 
radiation necrosis.[4]

Low signal to noise ratio in MRS causes the decrease in the 
spatial resolution. Therefore, the assessment of intratumoral 
heterogeneity is limited.[20] Chemical exchange saturation 

transfer is another MRI technique that detects metabolites 
with a higher spatial resolution than MRS and can be used 
to investigate intratumoral heterogeneity in glioma.[81]

Positron emission tomography

PET is another imaging modality widely used for imaging 
of gliomas using their molecular and biochemical 
attributes such as glucose, nucleoside, or amino acid 
metabolism.[8] The use of PET imaging for the first 
time in oncology dates back to the early 1980s, when 
2‑deoxy‑2 [18F] fluoro‑D‑glucose (FDG), 11C‑labeled 
amino acids, and nitrosourea analogs were used for 
brain tumors.[82‑84] Since the late 1970s, the clinical use 
of alternatives to FDG‑PET, like radiolabeled amino 
acids, has been propounded for cancer imaging.[8] Tracers 
including 11C‑MET and 18FET are more useful than 
18F‑FDG and are most widely used.[49] 11C‑MET and 18FET 
are preferable for diagnosis of glioma in areas of infiltrating 
tumor cells that are not visualized by MRI.[4] It has been 
shown that using 18FET data for RT planning compared to 
conventional methods increases the treatment volumes.[85,86] 
In clinical trials, nucleic acid tracers like 18F‑FLT have been 
shown to be better than 18F‑FDG in differentiation between 
LGG and HGG.[4] The relation between nucleic acid 
tracers and histological proliferation markers has been well 
documented.[87] The most common PET radiotracers for use 
in brain imaging are amino acid PET radiotracers including 
MET, FET, 18F‑fluoro‑l‑dihydroxy‑phenylalanine (FDOPA), 
and AMT.[8]

Prognostic and predictive information

Magnetic resonance diffusion and perfusion imaging

Predicting the true progression of the tumor can be achieved 
using diffusion and perfusion parameters such as ADC and 
rCBV,[88,89] ktrans and ve values,[90] extraction fraction (EF),[39] 
and FA from longitudinal DTI.[33] In diffusion imaging, 
longitudinal variations in water molecules’ mobility as an 
early indicator of treatment response are also correlated 
with overall progression and survival time.[4] The 
correlation between pretreatment DWI‑MRI parameters, 
ADC and diffusion index (RD), of brain tumor patients and 
response to RT has been indicated.[34] Minimum ADC value 
before surgery has a negative association with the Ki‑67 
labeling index and can be applied to predict progression in 
malignant astrocytic tumors, including GBM and anaplastic 
astrocytoma.[91] Hamstra et al. showed that functional 
diffusion map data have potential to be used as an early 
predictor of treatment response and overall survival (OS) in 
HGG.[92]

The most important prognostic molecular factors in 
gliomas are isocitrate dehydrogenase (IDH) mutations, 
which can be detected using DSC‑CBV and DSC‑CBF 
parameters. DCE permeability parameters, including Ktrans, 
vp, and ve, have also shown a decrease in the case of IDH 
mutant gliomas compared to IDH‑wild‑type.[35,36,38] On 
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the other hand, the results of studies on the usefulness of 
ASL‑CBF in distinguishing these two types of gliomas 
are not consistent.[38,93,94] The study by Yamashita et al. 
demonstrated that combination of tumor blood flow 
obtained from ASL and measurement of necrotic area 
from routine MRI is a surrogate marker for predicting the 
IDH1 status in GBM patients.[40] In addition, Nguyen et al. 
showed that DCE modeling can be used to predict OS in 
patients with glioma.[95] In a study carried out by Larsson 
et al., the prognostic value of DCE parameters including 
Ktrans and CBFT1 in early prediction of OS was more 
promising than DSC parameters.[96]

Magnetic resonance spectroscopy

Kumon et al. concluded a direct relationship 
between the ratio of MI/Cho and better prognosis 
of IDH‑wild‑type (IDH‑wild‑type) GBM patients in 
preoperative MRS analysis.[42] In another study, after 
investigation of the recurrence free survival (RFS) and 
MRS parameters including NAA/Cr, Cho/Cr, Cho/NAA, 
and MI/Cr ratios in HGG patients, the authors concluded 
that the Cho/ Cr ratio has a significant correlation with 
RFS.[97]

Positron emission tomography

Valuable prognostic and predictive information is obtained 
using some PET tracers. For example, 18F‑FLT was 
introduced as a predictor of response to bevacizumab 
treatment in glioblastoma patients, which performed 
better than MRI in predicting early and late response to 
treatment and OS.[46] MET‑PET has also been proposed 
as a predictor of treatment response in malignant 
glioma.[45,98] In a prospective phase II study, after using 
postoperative 18FET‑PET for definition of CTV in treatment 
planning, Piroth et al. concluded that postoperative tumor 
volume in 18FET‑PET has a significant relationship with 
progression‑free survival and OS in GBM patients.[99] It is 
also possible to monitor tumor oxygen deficiency, which is 
a substantial characteristic of HGGs, using PET imaging.[4]

All imaging modalities and techniques have certain 
advantages and disadvantages which some of them are 
given in Table 1. The physicians can choose the best option 
based on the available facilities and the patient’s condition.

Correlation between Imaging Findings and 
Biological and Clinical Information of Glioma
Vascular permeability, the presence of vascular endothelial 
growth factor (VEGF)/VPF, and angiogenesis are important 
mediators of tumor growth that can be obtained by 
perfusion and permeability imaging.[100,101] The amount 
of vascular proliferation is an important criterion in 
the histopathological description of tumor biology and 
prognosis.[60] CBV measurements have a strong and direct 
relationship with histopathological grade of cerebral 
gliomas and may be employed to assess the effect of 

treatment or to distinguish between tumor recurrence and 
the posttreatment radiation effect.[60,102‑104] Mathematical 
modeling by DCE imaging has shown that Ktrans is 
associated with tumor aggressiveness.[95] CBV and Ktrans 
have a direct relationship with molecular markers such as 
VEGF.[60,105]

There are also imaging markers related to the 
O6‑methylguanine‑DNA methyltransferase (MGMT) status; 
for example, preoperative minimum ADC value of GBM 
tumors is associated with MGMT promoter methylation 
status.[106] Furthermore, Ktrans has potential to be used as an 
imaging marker because of its significantly higher value in 
the MGMT‑methylated group of GBM patients.[107] Another 
study has suggested the use of radiomic features extracted 
from pretreatment 18FDOPA‑PET images to predict the 
MGMT status in glioblastoma patients.[108]

MRS can noninvasively detect IDH mutations using the 
levels of the metabolite 2‑hydroxyglutarate (2HG), so that 
in IDH‑mutant tumors, the amount of 2HG metabolite 
increases, and in the IDH‑wild‑type, its amount is normal.[7] 
2HG is an oncometabolite that affects the hypoxia‑inducible 
factor‑1α, which is a tumor progression factor in 
GBM.[109] It should be noted that accurate diagnosis using 
MRS has many advantages over biopsy, including low 
risk, reproducibility, and the possibility of noninvasive 
examination of different parts of the tumor, but under the 
appropriate acquisition and quantification techniques to 
prevent false results.[109] Using dynamic 18F‑FDOPA PET 
uptake parameters, the presence of IDH mutation in newly 
diagnosed gliomas can be predicted.[110] Furthermore, 
via radiomic analysis of 18F‑FDG PET images, the IDH 
genotype status was effectively and noninvasively predicted 
in glioma patients.[111]

Conclusion
Along with challenges involved in development of an 
effective treatment and early treatment evaluation of 
glioma, the identification of specific and noninvasive 
biomarkers will be useful. Prognostic information and 
predicting individual patient’s response to the treatment 
can be obtained using specific biomarkers. Substantial data 
on cell proliferation, angiogenesis, hypoxia, and metabolic 
activity using advanced imaging techniques are provided 
for better management of glioma. For example, in diffusion 
imaging, it is possible to distinguish the edema from the 
infiltrative tumor cells and the neoplastic areas from the 
abscess. ADC and RD can be related to treatment response 
in pretreatment DW images of tumor. Tumor physiological 
parameters obtained in perfusion MRI techniques such 
as CBV, rCBV, CBF, Ktrans, and vp can be correlated 
with tumor biology. Using appropriate acquisition and 
quantification techniques to prevent false results, MRS can 
discriminate between normal tissue and tumor, identify 
types and grade of tumor, predict survival, or differentiate 
between tumor recurrence and radiation necrosis. Ratios of 
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Cho/NAA, Cho/Cr, and MI/Cr have diagnostic information, 
and Cho/Cr ratio has a significant correlation with RFS. 
The use of PET as a complementary modality to MRI 
in the clinical management of brain tumors, including 
glioma, is increasing because of its accuracy in quantitative 
measurements. The most common amino acid PET tracers 
for use in brain cancer including glioma are 11C‑MET, 
18FET, FDOPA, and AMT.

Vascular proliferation is an important factor in describing 
tumor biology and prognosis. For this reason, rCBV is 
related to tumor grade and histopathology results. Ktrans is 
also related to tumor aggressiveness. Moreover, both Ktrans 
and CBV have a direct relationship with the molecular 
markers such as VEGF. Minimum ADC values of GBM 
tumors are related to MGMT status. IDH mutations can 
be detected using 2HG MRS metabolite and dynamic 
18F‑FDOPA PET uptake parameters.
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