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Abstract
Background: Diagnosing emotional states would improve human‑computer interaction (HCI) 
systems to be more effective in practice. Correlations between Electroencephalography (EEG) 
signals and emotions have been shown in various research; therefore, EEG signal‑based methods 
are the most accurate and informative. Methods: In this study, three Convolutional Neural Network 
(CNN) models, EEGNet, ShallowConvNet and DeepConvNet, which are appropriate for processing 
EEG signals, are applied to diagnose emotions. We use baseline removal preprocessing to improve 
classification accuracy. Each network is assessed in two setting ways: subject‑dependent and 
subject‑independent. We improve the selected CNN model to be lightweight and implementable 
on a Raspberry Pi processor. The emotional states are recognized for every three‑second epoch 
of received signals on the embedded system, which can be applied in real‑time usage in practice.  
Results: Average classification accuracies of 99.10% in the valence and 99.20% in the arousal for 
subject‑dependent and 90.76% in the valence and 90.94% in the arousal for subject independent 
were achieved on the well‑known DEAP dataset. Conclusion: Comparison of the results with the 
related works shows that a highly accurate and implementable model has been achieved for practice.
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Introduction
Nowadays, human–computer 
interaction (HCI) systems are a big part of 
human lives. It seems that such interactions 
need to have the same social and natural 
principles as the human‑to‑human 
interactions. In many related applications, 
emotional information is required to have 
more effective systems. For example, in 
some diseases, understanding the emotions 
of patients affects the therapy manner. Some 
patients, for example, those with autism 
disorder, could not express their emotions. 
Therefore, the ability to understand the 
users’ emotions is of interest.[1] In the recent 
research, the lack of emotional information 
in HCI has been considered. To improve 
such ability in HCI systems, machines need 
to understand and interpret the emotions of 
humans. The aim is to have adaptive and 
personalized means of emotion recognition 
which needs research in different fields of 
science, for example, artificial intelligence, 

psychology, computer science, and 
neuroscience.[2]

Humans may have different emotions such 
as happiness, sadness, joy, and satisfaction. 
In the literature, various models have been 
proposed for emotion states.[3] One of the 
most popular is Russell’s 2D circumplex 
model, which defines emotions as a 
two‑dimensional space of valence and 
arousal. The term “Valence” indicates the 
level of pleasure, and “Arousal” indicates the 
level of excitation.[4] Although in Russell’s 
model and some studies, for example,[5] the 
emotions have been regarded as continuous 
variables, in most related works, they have 
been regarded as discrete states.

Emotions can be recognized from 
speech, behavior, motion, facial 
expression, or physiological signals. 
Physiological data used for this purpose 
are electrocardiography (ECG), heart rate 
variability, electroencephalography (EEG), 
facial recognition, forehead biosignal, speech 
recognition, skin temperature (SKT), blood 
volume pulse, and respiration (RSP).[6‑10] 
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In Zhang et al.’s study,[11] RSP signals were studied to 
recognize emotions. The model was developed using the 
DEAP dataset[12] and the Augsburg University dataset. In 
some studies, galvanic skin response (GSR) signals are 
used for emotion recognition. For example, in Ayata et al.’s 
study,[13] valence and arousal were categorized using GSR. 
In Villarejo et al.’s study,[8] GSR was used to build a stress 
sensor. In Domínguez‑Jiménez et al.’s study,[14] information 
about heart rate as well as GSR was considered to recognize 
three target emotions. In some works, ECG signals were 
decoded to detect the emotional states. For example, a 
deep neural network (DNN) in Keren et al.’s study[15] and 
a scattering wavelet algorithm in Sepúlveda et al.’s study[16] 
were employed to detect emotion from ECG signals.

To improve the accuracy (ACC) of emotion recognition, 
some studies use both physical signs and physiological 
signals. In Tarnowski et al.’s study,[17] an experiment 
was designed with 22 subjects using a movie as the 
stimulus; meanwhile GSR and EEG signals of each 
subject were extracted and processed. Frequency domain 
features were extracted, and two classifiers, support 
vector machine (SVM) and K‑Nearest Neighbors (KNN), 
were implemented. In Goshvarpour et al.’s study,[18] 
ECG and GSR signals were used to recognize emotions. 
An experiment was designed with 11 subjects, and the 
stimulus was a music clip. Features were extracted using 
Wavelet and Discrete Cosine Transforms. After reducing 
the dimension of the features, principal component analysis 
was used to detect the four classes of valence and arousal 
plane. The results of this paper showed that the ACC using 
ECG features is more than those of GSR. Facial expression 
data, ECG, SKT and conductance, breathing signal, mouth 
length, and pupil size were used in Tan et al.’s study[19] to 
recognize the emotions by enhanced neural networks.

Although research on emotion recognition is very 
extensive, some methods are subject‑based, and in some 
cases, an external reaction against a stimulus depends on 
the personality of the subjects. For example, if a subject 
decides to conceal his feeling, the performance of some 
methods would be affected. Overall, methods based on 
physiological signals are more reliable. As the brain is 
the source of human reactions to external stimuli, EEG 
signal‑based methods are the most accurate and informative. 
Correlations between EEG signals and emotions have been 
shown in the research. The frontal scalp seems to store 
more emotional activation compared to other regions of 
the brain.[20] Furthermore, processing EEG signals has 
more advantages compared to some different techniques. 
Providing an immediate medical care with low cost and 
ease in use for patients who cannot respond or have any 
movement makes EEG signals favorable in detecting some 
diseases and emotional states.[21]

Research on emotion recognition using EEG signals is 
extensive. There are differences in the extracted features, 

categories, classifiers, and the number of used channels, 
datasets, and experiments. In Zhang et al.’s study,[22] 
EEG signals of only two channels were employed, and 
empirical mode decomposition (EMD) strategy and SVM 
classifier were used. Two neural models, convolutional 
neural network (CNN) and DNN, were employed in 
Tripathi et al.’s study[23] on the DEAP dataset. Results 
in 2‑class and 3‑class modes were compared. In some 
studies, to find the most critical features of EEG signals 
to recognize emotions, different categories of features 
have been considered. In Khateeb et al.’s study,[24] time, 
frequency, and wavelet domain features were extracted, and 
using SVM, nine classes of emotions were identified. In 
Moon et al.’s study,[25] the power spectrum and correlation 
between two electrodes were extracted and fed to a CNN 
for classification. In Gannouni et al.’s study,[26] multi‑class 
emotion recognition was studied on the DEAP dataset. 
Considering nine emotion states, the authors achieved more 
ACC rate using quadratic discriminant classifier (QDC) and 
recurrent neural network (RNN).

In the literature, most deep learning algorithms achieved 
higher accuracies than machine learning ones. On the other 
hand, such algorithms are usually too complicated for 
practical implementation. In this paper, we aim to develop 
an emotion recognition model that is highly accurate and 
implementable on an embedded system using EEG signals. 
We use different state‑of‑the‑art CNN models which are 
appropriate for decoding EEG signals and assess them to 
find the most accurate one in diagnosing the emotional 
states. Since the models did not need feature extraction and 
selection steps, the processing steps were reduced. We use 
baseline removal preprocessing to improve classification 
ACC. Each network is assessed in two setting ways: 
subject‑dependent and subject‑independent. Next, we 
improve the selected CNN model to be lightweight and 
implementable on a Raspberry Pi processor. Using EEG 
signals from the DEAP[12] dataset, we investigate the model 
while the processing is in progress on the embedded board. 
The emotional states are recognized for every 3‑s epoch of 
received signals on the embedded system, which will be 
appropriate for real‑time usage. The results show that this 
lightweight model could achieve high ACC in recognizing 
the emotions and will be applicable for implementation in 
practice.

The rest of this paper is organized as follows: the material 
and methods are explained in Section 2, the simulation 
results are presented in Section 3, the implementation of 
the model on the hardware is described in Section 4, and 
Section 5 concludes the paper.

Materials and Methods
In this study, a deep learning model is used to detect 
emotions using the DEAP dataset. The study is performed 
in both subject‑dependent and subject‑independent settings. 
We have included preprocessing in our technique to remove 
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artifacts from EEG data. The baseline signal is removed, 
which improves the classification ACC significantly. 
Then, the data are segmented and finally passed to 
the convolutional network. EEGNet, EEG Shallow 
Convolutional Network (ShallowConvNet), and EEG Deep 
CNN (DeepConvNet) are carried out to recognize emotions 
in both subject‑dependent and subject‑independent settings. 
Finally, the ACC and F‑score of the three convolutional 
networks are compared. We also implement the lightweight 
model of the emotion recognition process on an embedded 
system using a Raspberry Pi board. The steps applied in 
this paper are shown in Figure 1. These steps are described 
more precisely in the rest of the section.

Dataset

In this study, the well‑known DEAP dataset[12] is used, which 
includes the electroencephalogram and other peripheral 

physiological signals of 32 subjects aged between 19 and 37 
while watching 40 1‑min music videos as the stimuli. EEG 
signals of 32 channels are available in the DEAP dataset. The 
level of arousal and valence of the subjects’ emotions after 
each experiment was assessed using Self‑Assessment Manikin, 
with values from 1 to 9 for each dimension. The emotional 
states were presented in a two‑dimensional valence‑arousal 
model, in which the valence ranged from sad to joyful, and 
arousal ranged from bored to excited.[27] We segment each 
valence‑arousal space into two parts. The values >5 are high 
valence/arousal, and those below 5 are low valence/arousal.

Preprocessing

In the DEAP dataset, EEG signals were recorded by the 
International Standard 10–20 Electrode Systems with a 
sampling rate of 512 Hz. In the preprocessing step, the 
signals were down‑sampled to 128 Hz, and a band‑pass 

Figure 1: The workflow diagram applied in this paper
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filter from 4.0 Hz to 45.0 Hz was applied to reduce 
electromyography and ECG effects from the signals. Eye 
movement artifacts and interferences of other sources were 
removed using blind source separation techniques like 
Independent Component Analysis (ICA).

The duration of each EEG signal in the DEAP dataset is 63 
s, containing a 3‑s pretrial baseline and 60 s of emotional 
information. The first 3‑s pretrial signal, in which the video 
had not started playing, was repeated 20 times, to get a 
60‑s signal, and then, this signal was subtracted from the 
60‑s trial. Then, the pretrial times were removed from the 
signals. Next, each 60‑s signal was segmented into 3‑s 
epochs, and finally, Z‑normalization was applied.

Processing

After preprocessing, the signals are prepared to be 
processed. In this work, three networks, namely, EEGNet,[28] 
EEG ShallowConvNet,[29] and EEG DeepConvNet[29] were 
used for emotion recognition. For each network, two 
setting ways were conducted in learning: subject‑dependent 
and subject‑independent learning. In the subject‑dependent 
setting, the model was trained, and parameters were 
extracted for each subject. In this method, we had 
800 samples (40 experiments ×20 epochs with 3‑s interval) 
for each subject. In the subject‑independent, the model 
was trained for all subjects, and 32 × 800 samples were 
available. We adopted a 5‑fold cross‑validation for both 
methods.

The results of the test on the three networks and with 
the two mentioned methods were compared in terms of 
ACC of emotion recognition in arousal and valence. The 
best method was determined based on the results. In the 
following, we introduce the three used networks and the 
parameters set in this study.

ElectroencephalographyNet

EEGNet[28] is a compact convolutional network that can 
be applied in different brain‑computer interface models, 
and can be trained using limited data. The structure of this 
network is shown in Table 1. The input of this network 
is as (C, T), in which C is the number of channels (in 
this study, C = 32) and T stands for time samples (in this 
study, T = 384 = 3 s × 128 Hz). Signals are passed from 
eight 2D convolutional filters. The output of this layer is 
EEG signals in eight frequency bands. Next, the signals 
are fed to DepthwiseConv2D as a special filter. To prevent 
overfitting, we use the dropout layer. Average polling 
is applied to reduce the size of features. After separable 
convolution, the last block is a softmax classifier with N 
units, where N is the number of classes set to 2 in this 
study. The model is trained using an Adam optimizer and 
a batch size of 64, learning rate of 0.01, and dropout rate 
of 0.5. We run the model 50 and 30 training iterations 
for subject‑dependent and subject‑independent methods, 
respectively.

Electroencephalography DeepConvNet

EEG DeepConvNet[29] is an EEG decoding DeepConvNet 
that is compatible with any type of feature. The structure 
of this network is shown in Table 2. This network contains 
five convolution layers and one dense softmax classifier. 
This model is trained with the same parameters mentioned 
in the EEGNet section.

Electroencephalography ShallowConvNet

EEG ShallowConvNet[29] has more shallow architecture 
than EEG DeepConvNet, and was designed to decode band 
power features of signals. The structure of this network is 
shown in Table 3. This model consists of a temporal and 

Table 1: ElectroencephalographyNet network structure, K=32 is the kernel length, Nc is the number of channels, 
and n is the number of data points in the channels[28]

Layer Number of filters Kernel size Padding Output Parameters
Input (1, Nc, N)
Conv2D 8 1×K Same (8, Nc, N) K×8
BatchNorm2D (8, Nc, N) 16
DepthwiseConv2D 16 Nc×1 Valid (16,1, N) Nc×16
BatchNorm2D (16,1, N) 32
ELU activation (16,1, N)
AveragePooling2D 1×4 Valid (16,1, N/4)
Dropout (16,1, N/4)
SeparableConv2D 16 1×16 Same (16,1, N/4) 512
BatchNorm2D (16,1, N/4) 32
ELU activation (16,1, N/4)
AveragePooling2D 1×8 Valid (16,1, N/32)
Dropout (16,1, N/32)
Flatten (16×N/32)
Dense 384 (2)
Softmax activation
ELU ‑ Exponential linear unit
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then spatial convolutional layer, mean polling, and finally, 
classification layer. This model is trained with the same 
parameters mentioned in the EEGNet section.

Simulation Results
As explained in Section 2, in this study, EEG signals from 
the DEAP dataset were used for emotion detection on an 
embedded system. After preprocessing, baseline removal, 
and segmentation, the signals were fed to EEGNet, 
EEG DeepConvNet, and EEG ShallowConvNet using 
subject‑dependent and subject‑independent methods to 
recognize the emotional states. To evaluate the model, 5‑fold 
cross‑validation was used, and to compare the results, ACC 
and F‑score[30] were utilized. The parameter is defined as:

TP + TNACC =
TP + TN + FP + FN

, (1)

in which, TP and TN are true classified cases (low arousal/
negative valence named positive emotion and high arousal/
positive valence named negative emotion), and FN and FP 
are false identified emotion ones.

The F–score parameter, which considers precision (Pre) 
and recall (Rec) rate, is as follows:

2 * Rec * Prescore =
Rec + Pre

−F , (2)

in which, Pre and Rec are:
TPPre =

TP + FP
, (3)

TPRec =
TP + FN

. (4)

Table 4 compares the results of the three networks 
EEGNet, EEG DeepConvNet, and EEG ShallowConvNet 
in subject‑independent method. As it turns out, the EEG 
ShallowConvNet model outperforms the other two models 
in the subject‑independent method. We achieved the best 
accuracies of 90.76% for valence and 90.94% for arousal 
using the EEG ShallowConvNet model.

Table 5 shows the ACC and F‑score results of the 
subject‑dependent method for valence and arousal. The 

table shows that the best accuracies of 99.1% for valence 
and 99.2% for arousal using the EEG ShallowConvNet 
model were achieved. To see the detail of the results, the 
valence and arousal ACC acquired in this method are 
presented in Figures 2 and 3, respectively.

Table 2: Electroencephalography DeepConvNet 
structure[29]

Block Layer Activation Padding Filter Size
1 Convolution Linear Valid 25 1,5

Spatial filter Linear Valid 25 32,1
Maximum polling 1,2

2 Convolution Linear valid 50 1,5
Maximum polling 1,2

3 Convolution Linear valid 100 1,5
Maximum polling 1,2

4 Convolution Linear valid 200 1,5
Maximum polling 1,2

5 Classification Softmax 2

Table 3: Electroencephalography ShallowConvNet 
network structure[29]

Layer Activation Padding Filter Size
Convolution Linear Same 40 1,13
Spatial filter Linear Valid 40 32,1
Mean polling Strides=(1,7)
Classification Softmax 2

Table 4: Classification results of the subject-independent 
method using electroencephalographyNet, 

electroencephalography ShallowConvNet, and 
electroencephalography DeepConvNet

Model Arousal Valence
Accuracy F‑score Accuracy F‑score

EEGNet 75.91±1.41 73.30±0.85 72.12±1.26 70.85±0.85
EEG 
ShallowConvNet

92.01±0.70 90.94±0.68 91.53±0.77 90.76±0.83

EEG 
DeepConvNet

90.21±0.43 88.62±0.44 87.60±0.61 86.37±0.64

EEG ‑ Electroencephalography

Figure 2: Accuracy of three networks in the subject‑depended method for 
the arousal dimension. ACC – Accuracy

Figure 3: Accuracy of three networks in the subject‑dependent method for 
the valence dimension. ACC – Accuracy
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As shown in Table 5 and Figures 2, 3, EEG 
ShallowConvNet is more accurate in the subject‑dependent 
method for both the arousal and valence dimensions. 
Furthermore, Table 4 shows that EEG ShallowConvNet 
works more accurately in the subject‑independent method, 
too. Therefore, we used this network in the embedded 
system.

To compare the results with other studies, we presented 
Table 6. To be comparable, the studies on the DEAP 
dataset are selected. As the table shows, our method is 
more accurate in both the arousal and valence dimensions 
than the methods presented in other articles.

Hardware implementation

In this study, a Raspberry Pi processor (version 4) was 
used to design an embedded system. This hardware has 
Quad‑core, 64‑bit ARM‑Cortex‑A72 running at 1.5GHz, 2 
Gigabyte LPDDR4 RAM, ARMv8 based, and has different 
communication interfaces.

In the implementation step of this study, the operating 
system (Armbian) was installed on the SD card. Commands 
were fed to the board using the Secure Shell protocol, and 
socket programming was used to provide the data to the 
processor.

TensorFlow Lite tools were used to reduce the size of the 
model and to increase the speed. TensorFlow lite model 
version is executed efficiently on devices with limited 
resources. In this work, different quantization techniques 
were applied to optimize the size of the model more. 
Quantization reduces the precision of the numbers used 
to represent a model’s parameters. Optimization and 
conversion reduce the model’s size and the latency, with 
minimal (or no) loss in ACC.

In this work, down‑sampling, filtering, and ICA were 
performed on the computer, and the rest of the preprocessing 
steps were performed onboard. Of course, all preprocessing 
steps can be done on the board, but it was not considered in 
this study. The emotional states were recognized for every 
3‑s epoch of received signals. These steps were performed 
for the ShallowConvNet model that provided the best 
results, both for subject‑dependent and subject‑independent, 
and for a variety of mentioned optimization techniques. In 
fact, in this study, this board can be used to receive data 
in real time, to perform preprocessing and processing 
based on trained TensorFlow models. This solution can 
also be integrated with an EEG recording device using an 
appropriate communication protocol.

The results of applying two quantization techniques 
are shown in Tables 7 and 8 for subject‑dependent and 
subject‑independent settings of the ShallowConvNet 
model, respectively. Optimization and conversion result 

Table 7: Subject-dependent results on board
Technique Dimension Accuracy F‑score Latency (ms) Model size (K bytes)
Without Quantization Arousal 99.20 99.20 12.5629 221

Valence 99.10 99.13
Posttraining dynamic range Quantization Arousal 99.20 99.21 12.5554 61

Valence 99.09 99.12
Posttraining float16 quantization Arousal 99.19 99.20 12.8859 114

Valence 99.09 99.13

Table 5: Classification results of the subject-dependent 
method using electroencephalographyNet, 

electroencephalography ShallowConvNet, and 
electroencephalography DeepConvNet

Model Valence (on average) Arousal (on average)
Accuracy F score Accuracy F score

EEGNet 75.91±1.41 73.30±0.85 72.12±1.26 70.85±0.85
EEG 
ShallowConvNet

92.01±0.70 90.94±0.68 91.53±0.77 90.76±0.83

EEG 
DeepConvNet

90.21±0.43 88.62±0.44 87.60±0.61 86.37±0.64

EEG ‑ Electroencephalography

Table 6: Comparison of the accuracy in different studies on emotion recognition
Study Year Methods Accuracy
[30] 2021 ECLGCNN 90.45% in valence and 90.60% in arousal
[31] 2020 RACNN 96.65±2.65 in valence and 97.11±2.01 in arousal
[32] 2020 Lagged Poincare Indices, RSSF, SVM 98.97% in valence and 98.94% in arousal
[33] 2021 SVM, CNN 52.50±11.29% in valence and 56.00±12.46% in arousal
[34] 2020 LSTM 94.69% in valence and 93.13% in arousal
[35] 2021 BiDCNN 94.38% in valence and 94.72% in arousal
Methods used 
in this paper

EEGNet, EEG ShallowConvNet, EEG 
DeepConvNet

99.10% for valence and 99.20% for arousal (on average, using 
the subject‑dependent method and EEG ShallowConvNet)

CNN ‑ Convolutional neural network; EEG ‑ Electroencephalography; ECLGCNN ‑ Emotion Classification Graph Learning CNN ; 
RACNN ‑ Regional‑Asymmetric CNN; RSSF ‑ Random Subset Feature Selection; SVM ‑ Support vector machines; LSTM ‑ Long short‑term 
memory; BiDCNN ‑ Bi‑hemisphere discrepancy CNN
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Table 8: Subject-independent results on board
Technique Dimension Accuracy F‑score Latency (ms) Model size (K bytes)
Without quantization Arousal 90.94 92.01 12.7359 221

Valence 90.76 91.53
Posttraining dynamic range quantization Arousal 90.95 92.02 12.5564 61

Valence 90.77 91.54
Posttraining float16 quantization Arousal 90.94 92.01 12.5254 113

Valence 90.77 91.54

in a significant reduction in the model’s size and faster 
computation (in most of the cases) without loss of ACC. 
According to the results, the best model for implementation 
is the EEG ShallowConvNet subject‑dependent resized 
with the posttraining dynamic range quantization.

Conclusion
In this study, we recognized the emotional states from EEG 
signals, by implementing three convolutional networks, 
EEGNet, EEG ShallowConvNet, and EEG DeepConvNet. 
For every network, we used two methods: subject‑dependent 
and subject‑independent. The best average classification 
accuracies of 99.10% in the valence and 99.20% in the 
arousal were achieved using EEG ShallowConvNet and the 
subject‑dependent method. Furthermore, since the models 
did not need feature extraction and selection steps, the 
processing steps were reduced. This makes it possible to 
implement the algorithm on embedded systems. We used 
the Raspberry Pi processor in our embedded system. After 
optimization and quantization, we achieved a lightweight 
model that could recognize emotional states for every 
3‑s epoch of received signals. It is possible to use such 
hardware in applicable devices like emotion detection 
wearable headbands.

Future studies aim to use mobile and wearable sensors to 
collect physiological signals such as ECG and EEG, and 
combine them in an appropriate framework to improve ACC 
in real‑time emotion detection. In this study, emotions have 
been identified in two dimensions, valence and arousal, like 
most papers in the literature. Expanding the model to include 
additional dimensions may also be considered in future 
approaches. For example, by analyzing situational information, 
the subject can be predicted in a three‑dimensional model of 
emotions, namely, arousal, valence, and position.
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