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Abstract
Background: Optical coherence tomography  (OCT) imaging significantly contributes to 
ophthalmology in the diagnosis of retinal disorders such as age‑related macular degeneration and 
diabetic macular edema. Both diseases involve the abnormal accumulation of fluids, location, 
and volume, which is vitally informative in detecting the severity of the diseases. Automated and 
accurate fluid segmentation in OCT images could potentially improve the current clinical diagnosis. 
This becomes more important by considering the limitations of manual fluid segmentation as a 
time‑consuming and subjective to error method. Methods: Deep learning techniques have been 
applied to various image processing tasks, and their performance has already been explored in the 
segmentation of fluids in OCTs. This article suggests a novel automated deep learning method utilizing 
the U‑Net structure as the basis. The modifications consist of the application of transformers in the 
encoder path of the U‑Net with the purpose of more concentrated feature extraction. Furthermore, a 
custom loss function is empirically tailored to efficiently incorporate proper loss functions to deal 
with the imbalance and noisy images. A  weighted combination of Dice loss, focal Tversky loss, 
and weighted binary cross‑entropy is employed. Results: Different metrics are calculated. The 
results show high accuracy  (Dice coefficient of 95.52) and robustness of the proposed method in 
comparison to different methods after adding extra noise to the images  (Dice coefficient of 92.79). 
Conclusions: The segmentation of fluid regions in retinal OCT images is critical because it assists 
clinicians in diagnosing macular edema and executing therapeutic operations more quickly. This 
study suggests a deep learning framework and novel loss function for automated fluid segmentation 
of retinal OCT images with excellent accuracy and rapid convergence result.
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Introduction
Optical coherence tomography  (OCT) is a 
noninvasive modality that can reconstruct 
high‑resolution cross‑sectional images 
containing structural and molecular 
information of biological tissues.[1,2] For 
example, ocular OCT is widely used to 
diagnose different retinal pathologies, such 
as hyperreflective retinal foci and cystoid 
areas.[3]

Macular edema  (ME) refers to swelling 
of the macula in the area of the central 
vision. It is an abnormal blister of fluid 
due to bleeding of the retinal barrier. ME 
can cause different retinal diseases, such as 
age‑related macular degeneration  (AMD) 
and diabetic ME  (DME). DME happens 

when excess fluid builds up and is a 
complication of diabetes. Early and accurate 
diagnosis of DME has many benefits for 
the public health system patient due to the 
on‑time cure and follow‑up of the severity 
level of DME.[4]

The detection and identification of 
fluid‑filled regions in ME disorders are 
medically essential. Because of the nature 
of OCT images, diagnosis of fluid‑filled 
areas is time‑consuming, and it needs the 
experience to figure out fluids correctly.[5]

Semantic segmentation is a fundamental 
and challenging task in image analysis for 
fluid or cyst segmentation which is to label 
each pixel of an image with a corresponding 
class. Over the past few years, unlike many 
conventional machine learning methods, 
deep learning models have achieved 
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remarkable performances and the highest accuracy rates on 
popular benchmarks, resulting in a paradigm shift in the 
field.[6]

One of the first deep learning methods for semantic 
segmentation is convolutional neural networks  (CNNs) and 
fully convolutional networks.[7] A fully CNN called U‑Net 
was created for the segmentation of medical images and is 
widely used in OCT segmentation for different tasks such 
as layers and cyst segmentation.[8] U‑Net structure consists 
of two parts, namely the encoder and decoder, with skip 
connections to connect these two parts. Since U‑Net is a 
CNN‑based method, it has some drawbacks, such as the 
intrinsic locality of convolution operations, and it is not 
easy to model long‑range relations.[9] Different methods, 
such as attention U‑Net,[10] U‑Net3++,[11] and Res‑U‑Net,[12] 
have been developed that try to remedy intrinsic locality 
problems. To choose the best model to serve as the base for 
evaluating various loss functions in the next stage, we used 
a variety of cutting‑edge semantic segmentation techniques. 
The different types of U‑Net,[7] such as Attention U‑Net,[10] 
U‑Net+++,[11] R2 U‑Net,[13] Trans‑U‑Net,[14] and Swin‑U‑Net,[15] 
are implemented to get the best performance for OCT 
fluid semantic segmentation. On the other hand, OCT cyst 
segments are imbalanced areas in the B‑scans,[16] so learning 
the U‑Net using a custom loss function is needed.

To overcome the mentioned problems, we propose an 
automated fluid semantic segmentation method for new 
OCT images. The main contributions of this article are as 
follows:
1.	 Different state‑of‑arts semantic segmentation methods 

were applied to get the best performance on the OCT 
semantic segmentation dataset

2.	 We suggested a fully automated approach based on 
Trans‑U‑Net

3.	 A customized loss function was implemented to work 
in the imbalanced datasets

4.	 We added noise to show the robustness of the proposed 
U‑Net method compared to other loss functions.

Methods
Different state‑of‑art U‑Nets are utilized to analyze 
the effect of each network on the performance of OCT 
semantic segmentation in the deep learning framework. 
Various deep learning architectures, such as Trans‑U‑Net, 
Swin‑U‑Net, U‑Net, attention U‑Net, and R2 U‑Net, are 
applied with similar and optimal parameter numbers. 
Because the Trans‑U‑Net in the results section has 
better performance than the others, we only focus on 
the Trans‑U‑Net in this section. We extracted different 
data augmentation subimages of size 512 × 512 pixels 
for preventing overfitting from the dataset, resulting in a 
stratified training set with around 2000 subimages. These 
data augmentation processes were coded in the Python 
programming language. In this section, we first introduce 
the Trans‑U‑Net duo to show that Trans‑U‑Net has better 

performance than other networks, then, in the last part, we 
provide the dataset and discuss the theoretical foundations 
of the suggested loss function.

Trans‑U‑Net

Encoder part

Transformers were first applied in natural language 
processing, and it used in the state‑of‑the‑art in many NLP 
tasks.[17] The input of a Trans‑U‑Net sequence[14] is an 
image  (H,W, and C) with a spatial resolution of H × W 
and C number of color channels. Our goal is to predict the 
corresponding pixel‑wise mask. Network architecture is 
illustrated in Figure 1. In the first stage, five convolutional 
layers with stride two are applied to extract low‑resolution 
feature maps. In the next step, input images are tokenized 
and reshaped to the two‑dimensional flatten patches. The 
transformer’s input is the length of L and the sequence, and 
the size of the patches is (P × P).

2=
(pach_size)

H ×WL � (1)

Patches are projected into the vector, and it maps into 
D‑dimensional. Position embedding data are used to encrypt 
patch spatial information. The patch spatial information is 
then encoded using a trainable positional embedding layer 
to store the spatial information that the transformer encoder 
layer can accurately model. Eq. 2 displays the encoder’s 
starting value, where E is a patch embedding projection,

EPOSITION is position embedding and i
px  shows ith vectorized 

patch.
1 2 1

0 POSITION  
N

p p p pz = x E; x E x E ;. . . ; x E + E � (2)

Each layer of the transformer encoder has L layers of 
multi‑head self‑attention  (MSA) blocks and multilayer 
perceptron (MLP) blocks shown as:

( )( )
( )( )

1 1

1 1

= Multihead Self ‑ Attention '
l l ‑ l ‑

l ‑ l ‑

z LN z + z

= MSA LN z + z � (3)

( )( )
( )( )

1

1 1 1

Multilayer Perceptronl l ‑

' '
l ‑ l ‑ l ‑

z =  LN z

= z MLP LN z + z � (4)

LN(.) denotes the layer normalization operator, a residual 
connection that bypasses each block to form an identity 
mapping and a layer normalization operator. The encoded 
image is finally obtained after iterative (3)‑(4) calculations.

Decoder part

Similar to the U‑Net concatenation component, the 
CNN decoder is used to take the abstract representation. 
However, there is a slight difference between absorbing 
feature maps from the transformer encoder and predicting 
the image. The decoder block starts with upsampling. Next, 
regular convolution operations concatenate feature maps 
from the previous layer. It resembles the U‑Net decoder 
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up to this point. It is now combined with the extracted 
transformer feature maps to create the final tensor. The 
fusion of the last layer results in the final step will provide 
a one‑dimensional predicted mask.

Dataset

The dataset used in this study comes from two disparate 
datasets (normal and DME) introduced in.[18] A raw dataset, 
including fluid images, was used. The acquired data 
contains 194 scans with fluid from the cirrus OCT device. 
In addition, we added 185 normal images to balance the 
proposed dataset. To increase the size of our dataset and 
evaluate the agreement and repeatability of the suggested 
approach network, we applied data augmentation, including 
rotation, shift, and crop. The dataset was split into 80% and 
20%, four quarters of the dataset were used as a training 
set, and the remaining were used as the test set. We applied 
k‑fold cross‑validation. The number of groups into which 
a given data sample is to be divided is specified by a 
single parameter called k. The performance of the k‑fold 
cross‑validation method for loss function was examined. 
We used five‑fold cross‑validation and drew graphs based 
on the mean of folds. The image sizes of the dataset are 
different. Dataset and masks are reshaped into 512 × 512.

To test the robustness of the suggested technique, Gaussian 
noise is applied to the images in the pixel domain. This 
results in a new dataset.

Loss function

Handling unbalanced data is one of the main issues in 
the OCT fluid segmentation task.[16,19] The OCT mask 

foreground region is too small in the context of the 
background image. As mentioned before, the Dice score 
coefficient is an overlap index that treats false negatives 
and false positives equally and has good performance in the 
segmentation. Tversky loss is based on linear Dice loss.[20] 
To reduce the imbalance effect, focal Dice loss, which is a 
generalization of the Tversky loss, is also used.[9] Weighted 
binary cross‑entropy (WBCE) loss encourages the proposed 
segmentation network to predict near the ground truth mask 
and help loss converge faster.[21‑23] These loss functions are 
combined by weights α, β and γ, respectively. Hence, our 
custom loss function using a combination of WBCE, focal 
Tversky, and Tversky to handle the imbalanced dataset is 
defined as follows.

Custom Dice Focal_Dice WBCE= Loss + Loss + Lossα β γL � (5)

Metrics

Dice coefficient

We use the Dice coefficient and Jaccard coefficient as the 
proper basis for comparing the located fluid objects. The 
Dice coefficient, also known as the f1‑score, reflects how 
comparable the predicted mask and the grand truth mask 
of images are, and it depends on the overlap between the 
results. The formula is defined as follows:

2 | A  B |Dice( ) =
| A | + | B |

A,B � (6)

Jaccard index

In semantic segmentation, one of the metrics that is used 
most often is called the Intersection over Union, which is 

Figure 1: The network architecture that is suggested for the optical coherence tomography semantic segmentation. MSA: Multi‑head self‑attention
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also known as the Jaccard Index. It measures similarities 
between sets, and the below formula defines it:

| A B |J( ) =
| A B |




A,B � (7)

Results and Discussion
In the problem of OCT fluid segmentation, the fluid region 
is only a small portion of the image. This image’s mask 
suffers from class imbalance. We employed different 
methods to overcome this problem and improve results. 
Different U‑Nets and loss functions were proposed to 
handle this problem. To segment fluid regions automatically, 
we designed an improved Trans‑U‑Net‑based novel loss 
function.

Network selection

The results are collected and implemented in Python 3.9 
using two GeForce GTX 1080Ti GPUs. In this work 
segmentation, the model was implemented with four 
different loss functions, two sets of data, and also six 
deep learning networks with the optimal parameters. The 
proposed datasets are simple and noisy. We used our 
method based on different U‑Nets to segment OCT fluids. 
The proposed method was cross‑validated by splitting 
80% as train and 20% as the test data. In the first step, 
we choose the best network for deep learning semantic 
segmentation. Loss functions of all U‑Nets are Dice loss 
as the base loss function and 100 epochs for all U‑Nets 
are applied.

We evaluated the effectiveness of many cutting‑edge U‑Nets 
for fluid segmentation approaches for fluid localization 
in DME and AMD patients. In the beginning, we do a 
quantitative analysis of the segmentation results on images 
from our dataset. Figure  2 illustrates the segmentation 
results of each network.

The quantitative results of the segmentation are shown in 
Figure  2, which was created by applying hyperparameter 
optimization to the proposed networks and then 
applying those networks to images from six different 
networks. In addition, Table  1 presents the findings from 
several models utilizing Jaccard and Dice outcomes.

Figure  2’s first and second columns display the results of 
multiple networks’ Dice and Jaccard. The third column 
displays the results of the loss function with fixed Dice 
loss. The Trans‑U‑Net approach outperforms other U‑Nets 
and cutting‑edge networks, as can be shown in the diagram. 
When using the settings from Table 1, Trans‑U‑Net 
outperforms other networks using the same filter sizes in 
terms of validation results. Figure 2 and Table 1 show that 
Trans‑U‑Net has better performance than other networks.

The number of the encoder CNN layers was five, the patch size 
was (4, 4), and the other model parameters are shown in Table 2.

Figure  3 displays the segmentation outcomes for each 
network in additional cells, the gold‑standard annotations 
(second column), and the qualitative findings of networks 
with fluid. The Trans‑U‑Net method, as shown in the image, 
performs well in both closed and large fluid environments. 

Table 1: The results of the 5‑fold cross‑validation 
score of cutting‑edge U‑Nets models after performing 

hyperparameter tuning
Dice (validation) Jaccard (validation)

U‑Net 85.90 (78.70) 78.70 (55.73)
Attention U‑Net 88.30 (79.30) 79.30 (53.80)
Trans‑U‑Net 89.54 (80.40) 80.60 (66.80)
R2 U‑Net 88.40 (78.90) 78.90 (63.16)
U‑Net+++ 76.50 (63.90) 63.90 (45.70)
Swin‑U‑Net 77.60 (65.60) 71.63 (42.30)

Figure 2: Compares the various models using the Dice, Jaccard, and Loss curves. In the metrics comparison, all of the models perform well. Trans‑U‑Net 
models, with 89.54 and 77.2 validation, provide the best Dice and Jaccard outcomes, whereas Swin‑U‑Net produces the poorest
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These findings led us to choose Trans‑U‑Net with the best 
settings as the main network for loss function analysis.

Loss function analysis

In the last part of the network section part, Trans‑U‑Net 
with the optimal parameters is selected. In this section, we 
are trying to improve the network using a modified loss 
function.

The plot of the assessment of the quantitative results (Dice, 
Jaccard, and Loss) versus the number of epochs in the 
proposed dataset is shown in Figures 4‑6.

Figures depict the convergence speed and result in the 
proposed loss function during the training and validation 
phase having better performance than the cutting‑edge loss 
functions for the imbalance dataset.

Table 3 displays the Dice and Jaccard findings for normal 
images, whereas Table 4 shows the results for noisy 

Table 2: Network parameters
Modified Trans-
Unet parameters  

Filter number 5
Transformer blocks 2
Convolutional layers per down‑sampling level 2
Convolutional layers (after concatenation) 
per up‑sampling level

2

Attention heads 2
MLP nodes per vision transformer 384
Embedding dimensions 96
Activation for transformer MLPs Gaussian error 

linear unit
MLP: Multi‑layer perceptrons

Figure 4: Dice score for initial and noisy image datasets. WBCE: Weighted binary cross‑entropy

Figure 3: Comparing segmentation outcomes from several U‑Net experiments on OCT B‑scan images. (a) The original image, (b) True mask, (c) Simple 
U‑Net, (d) Attention U‑Net, (e) Trans‑U‑Net, (f) R2 U‑Net, (g) U‑Net+++, U‑Net, and Swin‑U‑Net, (h) Swin‑U‑Net
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images. According to the results, the proposed method 
achieved higher performance in quantitative analysis. The 
numerical results express great superiority in Dice, Jaccard, 
and Loss metrics and in speed for segmenting fluid regions 
for the proposed initial and noisy datasets.

Figure  7 compares the visual results of different loss 
functions and the proposed method. Figure 7a is the results 
for the initial images, and Figure 7b is the results for noisy 

images. The proposed method with hybrid loss functions 
achieves the best performance in segmentation results than 
others.

Conclusions
Accurate fluid detection in OCT images is crucial for 
following up on ocular diseases such as DME and 
AMD. However, the cyst segmentation process is 

Figure 5: Jaccard score of initial and noisy image datasets. WBCE: Weighted binary cross‑entropy

Figure 6: Loss and validation loss of initial and noisy images. WBCE: Weighted binary cross‑entropy
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highly time‑consuming and challenging. Therefore, 
automatic semantic segmentation is a valuable 
solution to this problem. In this article, we introduce 
a novel loss function for using a deep learning network 
on an imbalanced OCT dataset and implement it in our 
dataset.

The resulting architecture of the proposed method inherits 
the advantages of other methods. It improves network 
performance and learning convergence speed, and the 
results were robust in semantic segmentation compared 
to loss functions. In future work, we will explore the 
genetics algorithm for automatic parameter selection and 
improve Trans‑U‑Net architecture by adding residual 
layers.
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