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Abstract
Backgorund: Nowadays, everybody’s life is dominated by COVID‑19, which might have been the 
source of severe acute respiratory syndrome coronavirus 2. This virus disrupts the lungs first of all. 
Recently, it has been found that coronavirus may affect the brain. Because all body actions rely on the 
brain, hence investigating its healthy is an essential item in coronavirus effects. Method: Brain image 
segmentation can be helpful in the detection of the regions damaged by the effects of coronavirus. Since 
every image given by photography devices may have noises, therefore, first of all, the brain magnetic 
resonance angiography  (MRA) images must be denoised for best investigation. In the present paper, 
we have presented the construction of multishearlets based on multiwavelets for the first time and have 
used them for the purpose of denoising. Multiwavelets have some advantages to wavelets. Therefore, we 
have used them in the shearlet system to expand the properties of multiwavelets in all directions. After 
denoising, we have proposed a scheme for the automatic characterization of the initial curve in the active 
contour model for segmentation. Detecting the initial curve is a challenging task in active contour‑based 
segmentation because detecting an initial curve far from the desired region can lead to unfavorable 
results. Results: The results show the performance of using multishearlets in detecting affected regions 
by COVID‑19. Using multishearlets has led to the high value of peak signal‑to‑noise ratio and Structural 
similarity index measure in comparison with original shearlets. Original shearlets are constructed from 
wavelets whereas we have constructed multishearlets from multiwavelets. Conclusion: The results show 
that multishearlets can neutralize the effect of noise in MRA images in a good way rather than shearlets. 
Moreover, the proposed scheme for segmentation can lead to 0.99 accuracy.
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Introduction
Phylogenetic analysis of coronavirus 
offered that the coronavirus, severe 
acute respiratory syndrome coronavirus 
2  (SARS‑COV‑2), originated in animals, 
perhaps in bats. It is transmitted to other 
animals and humans at the wet market of 
humans in Wuhan city. There is some proof 
that pangolin, a type of nocturnal anteater, 
imported this virus. Then this animal 
carries a coronavirus that is very similar to 
SARS‑COV‑2, but it is different in a crucial 
region, so it appoints viral infectivity 
and host range. Hence, the virus passed 
into humans; it spread so quickly from 
one person to another. Since coronavirus 
is more contagious, fast detection and 
isolation of affected people is crucial. A 

routine way for COVID‑19 screening is 
medical imaging like X‑ray or computed 
tomography  (CT). By investigating X‑ray 
or CT images, experts can detect the effects 
of coronavirus on each part of the body.[1,2]

The virus disrupts the lungs and can clot 
the blood and cause a heart attack. Another 
effect of this virus is its effect on the 
human brain that this virus may form air 
bubbles in the brain and affect the brain 
and its efficiency and memory. Hence, 
we must use brain magnetic resonance 
angiography  (MRA) images to detect 
the effects of coronavirus on the brain. 
Since coronavirus can affect the brain, 
it can disrupt body’s activities. Hence, 
investigating the brain during the infection 
of coronavirus infection is essential.[3‑6]

By segmentation of the brain MRA 
image, affected regions from coronavirus 
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can be detected, and therefore, experts can determine 
affected regions fast by using machine learning methods 
in segmentation.[7,8] There are many classic and novel 
segmentation methods,[9‑14] but, among them, the active 
contour is the most popular and fast.[15] Deep learning 
models demonstrated improved results, however, they are 
limited to the pixel‑wise fitting of the segmentation map. 
This limitation can be tackled by considering the size of 
boundaries and the intensities inside and outside the region 
of interest during the learning process.[16‑19]

This can be achieved by using an active contour loss 
function inspired by active contour model  (ACMs). 
However, determining the initial curve plays a vital role 
in the segmentation of desired region.[20‑23] If the initial 
curve is far from the region which we want to extract, 
the segmentation result will not be proper.[24‑26] Therefore, 
here, we have used the image histogram for initial curve 
detection. It must be mentioned that, because the MRA 
images given by devices may have some noises, we have 
used a new idea for the first time for denoising based on 
shearlets constructed from multiwavelets.

Wavelets, because of their excellent localization and 
scalable properties, have been used in many applications. 
However, the limitation was that wavelets cannot detect 
curve‑like singularities  (such as edges) well and cannot 
detect the directions of the edges.[27,28] Nevertheless, 
shearlets[29‑31] have been constructed in recent years to omit 
these limitations. Shearlets are constructed from wavelets 
by applying shear and scale operators on them.

We want to construct shearlets from multiwavelets.[32‑34] 
In this way, we can extract features of the image better 
than one wavelet. Multiwavelets have wavelets that are 
symmetric and orthogonal simultaneously. Therefore, 
we have more freedom in using them rather than one 
wavelet, because wavelets do not have these properties 
simultaneously.

The rest of this paper is as follows: section 2 contains 
the advantages of multiwavelets and construction of 
multishearlets. In section 3, the proposed scheme for 
segmentation has been explained and some figures have 
been provided to show the results of using multishearlets 
for segmentation and denoising. In section 4, results of 
the proposed scheme have been discussed. Section 5 is 
conclusion and section 6 introduces the used dataset.

Materials
Advantage of multiwavelets
Wavelets which have developed since 1980 have many 
applications in signal and image processing, numerical 
analysis, approximation theory, data compression, and other 
fields. Wavelet theory is based on a refinement equation as 
follows:

2 (2 )k
k

(x)= h x k−∑f f .� (1)

This relation defines the scale function f. The scale function 
must satisfy multiresolution approximations  (MRAs), 
and this leads to easy decomposition and reconstruction 
methods. There are some kinds of wavelets such as ridgelets 
and curvelets. One such generalization is multiwavelets. In 
multiwavelets, the scale function f is replaced by a vector.
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which is called multiscale function, and the refinement 
equation is:

( ) (2 )k
k

x m h x k= −∑f f � (3)

Multiwavelets can affect to MRAs and fast algorithms just 
like scalar wavelets. However, they have some benefits:[28,35] 
first, they contain an extra degree of freedom, and this leads 
to some reducing restrictions in filter designing. For example, 
it is approved that a scalar wavelet cannot simultaneously 
have both orthogonality and asymmetric filters except the 
Haar scale function. Symmetric filters are necessary for 
symmetric signal expansion, while orthogonal filters lead 
to more accessible and more implement design. Moreover, 
the length and the number of vanishing moments depend 
directly on the filter length of scalar wavelets. Designing 
symmetric and orthogonal filters is impossible in the case 
of scalar wavelets. For example, the  4‑tap Daubechies have 
an orthogonal filter and second order approximation, and 
the scaling function support is [0,3] but does not have the 
property of symmetry which is important. The filter of the 
biorthogonal 9/7 wavelet is symmetric, and this wavelet 
has a fourth order of approximation and support of scaling 
function is [0,9] but does not possess orthogonality.[36]

Legendre Multiwavelets

Here, we give an example of Legendre multiwavelets 
which is a linear multiwavelet.

Scaling functions

A pair of linear Legendre scaling functions on the interval 
[0,1] is defined as:
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The integer translates of f0(x) and f1(x) together span V0 
in MRAs conditions and 1/2 scaled version of span V1. 
Two‑scale relation for them is:
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therefore, p (the low‑pass matrix) is:
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Wavelets

Corresponding to two scaling functions for linear Legendre 
multiwavelets, we have two wavelet functions as:
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and two‑scale relation for these wavelets is as:
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therefore, q (the high‑pass matrix) is:
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2 2 2 2

q
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Note that, each row of q is considered a high‑pass filter.

Approximation order

We say that a multiscale function f(t) has approximation 
order m if each polynomial tj,j=0,1,...,m-1 is a linear 
combination of integer translates f(t-k):[33]
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Suppose that f(t) ∈ L1 and integer translates fj(t-k), 
j = 0,1,..., m - 1 are linearly independent. Then 
f(t) provides approximation s if and only if L has 
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and Hi are low‑pass matrices. In the case of Legendre 
multiwavelets, where we have H0 and H1 and other His are 
zero matrices. Then from Strang and Strla,[34] we can put L as

[ ] [ ]
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and it can be seen easily that if in Legendre multiwavelet 
has m scaling functions, then the accuracy order is m. For 
example, in the case of linear Legendre, if we put

1 0 1 0

3 1 3 1‑= 2 2 2 2
0 0 0 0
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we can see that its nonzero eigenvalues are 1, 
1
2 .

Multiwavelets for image analysis

In 2D signals  (images), we can use a multiwavelet filter 
bank for analyzing the image as shown in Figure  1. one 
must consider that each of H or G contains filters more 
than one.

Suppose that our image is represented by I0 which is as an 
N by N matrix.  The first step is to convolve all the rows 
by the row filters, where the first half of each row contains 
coefficients that belong to the first scaling function and the 
second half belongs to the second scaling function, and 
stores the result as a square array I1. The next operation 
is the convolution of the columns of the array I1 with a 
column filter where the first half of each column belongs 
to coefficients of the first scaling function and the second 
half of each column corresponds to the second scaling 
function and produces an output matrix I2, such that the 
multiwavelet cascade begins with iterative filtering by low 
and highpass filters in horizontal and vertical directions. 
The result after one cascade step can be represented by:
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Here, a typical block H2 L1 contains low‑pass coefficients 
corresponding to the first scaling function in the horizontal 
direction and highpass coefficients corresponding to the 
second wavelet in the vertical direction. The next step of 
the cascade will decompose the “low‑pass” submatrix 

Figure 1: Analysis multiwavelet filter bank
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in a similar manner.

Shearlets
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it can form an admissible shearlet. Note that any function Ψ 
where  has compactly support far from the origin can be 
an admissible shearlet.[29] One example of these shearlets is 
given in the following definition. Let ψ∈L2(



2) be defined 
by
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where Ψ1∈ L2(R2) is a discrete wavelet which satisfies the 

discrete Calderon condition by:
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satisfying  ( )2 C R ∞∈ and supp  [ ]2 ‑1,1 ⊆ . Therefore 
Ψ is called a classical shearlet. The classic shearlet is 
a Parseval frame for L2(



2). Therefore, the continuous 
shearlet system SH(Ψ) which is defined by
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can reproduce L2(


2). Let Ψ ∈ L2(R2), the continuous 
shearlet transform of f ∈ L2(



2) is

( ) ( ) ( )2 2f L SH f a,s,t = f, a,s,t , ∈ → 〈 〉 � (22)

associated with a > 0 as the scale variable, s ∈ 


 as the 
orientation variable and t ∈ 



2 as the location variable. 
Cone‑adapted shearlet systems have been designed to detect 
an edge along  x1 (horizontal edges) axis where a function is 
mainly concentrated along the ξ2 axis in the frequency domain. 
In such cases, f can only be detected in the shearlet domain as 
s → ∞ and it can be a severe limitation for some applications.

For  ( )2 2, , Lf   ∈  , the cone‑adapted continuous shearlet 

system ( )SH , ,f    is defined by
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 and 

1 2 2 1( , ) ( , ). ( )       =  is 

associated with horizontal cones and  ( )  is associated 
with vertical cones.

Construction multishearlets based on multiwavelets

For designing multishearlets, each of ( ), ,f    in[34] is 
replaced by a vector function such as in  (2). In Legendre 

Figure 2: Some multishearlets for Legendre of order 3. The first row is for 
one wavelet and the second row is for another wavelet.

Figure 3: (a and c) Noisy image with Gaussian noise for σ = 10 (b and d) 
Denoising result by Multishearlets

dc

ba
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multiwavelets, even order wavelets are symmetric, that 

means 1 1x
2 2

+ = ‑x+    
   
   

and odd order wavelets are 

anti‑symmetric, which means 1 1x
2 2

+ = ‑ ‑x+    
   
   

.[37,38] 

Therefore, in cone‑adopted shearlets, the following equations 
will be satisfied for even order wavelets and odd order 
wavelets, respectively:
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Therefore, Ψa,s,t will be symmetric for even order 
wavelets and anti‑symmetric for odd order wavelets. 
These statements will be factual for  a,s,t too. See some 
multishearlets in Figure 2.

First advantage of multishearlet

In multishearlets, we have symmetric shearlets, which 
are suitable for edge detection problems. Moreover, by 
increasing the order of wavelets in multiwavelet system, 
we can detect more singular points.

Second advantage of multishearlets: High approximation 
rate

Approximation rate of shearlets was O(N-2(logN)3) and was 
proven in.[39] Approximation rate of using multishearlets is 
O((Nk)-2(logNk)3), where k is the number of functions in 
multiwavelet system. If we substitute 1 kf, + ...+ f, 

instead of f, in proof of approximation rate in,[39] we 
can obtain the approximation rate of multishearlets. The 
critical equation for beginning the proof of approximation 

rate of multishearlets is 
3
4

1 kf, ... f, .2k 
−

+ + ≤ . 
Moreover, using multishearlets, instead of shearlets, has 
more freedom degree. In multishearlets, there is more 
than one wavelet, therefore we have more choices for our 
works. In denoising, smooth wavelets are effective and in 
edge detection sharp wavelets are effective.

Methods: Proposed scheme for segmentation
Step 1: Denoising Based on Multishearlets

Similar to denoising by shearlets with one shearlet generator, 
in denoising by multishearlets, we denoise the image by each 
of the shearlet generators and then we consider the mean 
image of these denoised results as a final denoised result. Note 
that in denoising, to get a good result, we can use a smooth 
multiwavelet and high order multiwavelet (see e.g. Figure 3).

In Tables  1 and 2, we have added Gaussian noise 
with different σ to the above images and then peak 
signal‑to‑noise ratio (PSNR) and Structural Similarity Index 
Measure (SSIM) values for each of the shearlet method and 
multishearlet method have been computed. These tables 
show the good performance of multishearlets, because 
multishearlets preserve structure better than shearlets and 
also the denoise image is more similar to shearlets resulting 
in the original image. PSNR and SSIM between the original 
image X and denoised image Y are defined as:

( )
m n 2

i, j i, j
i=1 j=1

1MSE = X ‑Y
mn ΣΣ � (26)

2

10
25510
MSE

PSNR = log ,
 
 
 

� (27)

( )
( ) ( )
( ) ( )

x y 1 xy 2

2 2 2 2
x y 1 x y 2

2 +c 2 +c
SSIM X,Y =

+c + +c

  

   
� (28)

Step 2: Histogram plotting of the image

Every image has intensity values between 0 and 255. 
When the image is normalized, these intensity values lie 
between 0 and 1. Histogram of the image gives us intensity 
information. Histogram of the image says how many pixels 
in the image have specific intensity values. Figure 4 shows 
the histogram of two brain images affected by coronavirus. 
By looking in these histograms and considering brain 
images, we can see peak in histograms that are related to 
regions affected by coronavirus. By considering regions 
that have intensity values in domain of this peak we can 
the boundary of regions that may be affected. Therefore, 
in using active contour for segmentation, the initial curve 
is determined automatically and hence the regions can be 

Figure 4: left column: brain images, right column: Histogram of the images 
in left column. Following figures show the results of segmentation by active 
contour on brain images by this scheme
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segmented precisely. Segmentation algorithms are related 
to one of two fundamental properties of strength worthy’s 
disconnectivity and similarity. The first one is partition of 
an image based on sudden changes in strength. The second 
category is based on partitioning one image in the areas 
that look like according to an earlier defined criterion. 
Histogram thresholding approach belongs to the second 
category. Histogram is created by splitting the data ranges 
in equal‑sized bins. After that for every bin, the number 
of points from the data set. The data sets that fall in each 
bin are counted in thresholding foundation the gray level 
histogram matches with an image, combined of dark objects 
in a light background. Hence, objects and background 
pixels have gray levels grouped into two modes. A  way 
to emerge the objects from the background is selecting a 
threshold ″T″. Any point  (x, y) for f(x, y) > T for is called 
a point of object on the other hand, the point is called a 
background.

Step 3: Segmentation by Active Contours

ACM or namely snakes proposed by Kass et al. is an 
applicable model in computer vision for delineating with 
object detection from the images which may have noise, 
also in shape recognition, segmentation, edge detection, and 
stereo matching.[35,40] Deformation of the snakes depends 
on the intensities and moves in a way that minimizes the 
energy inside and outside the snakes. A  simple flexible 
snake is determined by a set of m points vi for i = 0,..., 
m-1, the internal flexible energy term Einternal, and the 
external edge‑based energy term Eexternal. The purpose of the 
internal energy term is to control the deformations made 
to the snake, and the purpose of the external energy term 
is to control the fitting of the contour onto the image. The 
external energy is usually a combination of the forces due 
to the image itself Eimage and the constraint forces introduced 
by the user Ecov. By using ACM with initial curve which is 
extracted from the previous step, the brain images can be 
segmented.

Results and Discussion
The proposed scheme has been test on 70 images of whole 
brain atlas dataset. Tables 1 and 2 show that multishearlets 
have higher peak signal‑to‑noise ratio and SSIM values 
rather than shearlets in denoising. Moreover in Figure  5, 
we have presented the segmentation results on two sample 

images. The proposed method can reach to the accuracy 
of 0.99 and DSC of 0.97 in segmentation of the images. 
The results show that the proposed scheme can extract the 
region of tumor carefully.

Conclusion
In this paper, we have designed multishearlets and have 
used them for denoising in brain images affected by 
coronavirus. Moreover, we have determined initial curve 
automatically based on histogram of the images. Then, 
we have applied active contour for segmentation of the 
affected regions. Experimental results demonstrated their 
good performance. Moreover, by using multiwavelets 
instead of wavelets in constructing of shearlets, we can 
extract features of the image by using smoother filter for 
smooth parts of the image and using sharper filter for sharp 
parts of the image. It can be an idea for segmentation by 
multishearlets.

Dataset

The data set which we have used is whole brain Atlas 
dataset http://www.harvard.edu/aanlib/home.html.

This dataset contains images of normal brain, brain attack, 
neoplastic disease or brain tumor, and inflammatory and 
Alzheimer images. These images are used in studying of 
brain diseases.
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Table 1: Peak signal‑to‑noise ratio and structural 
similarity index measure comparison for first image

σ PSNR SSIM
Method

Shearlets Multishearlets Shearlets Multishearlets
5 37.28 38.84 0.69 0.78
10 34.19 35.36 0.60 0.68
15 32.30 33.28 0.54 0.60
20 30.94 31.85 0.49 0.54
25 29.83 30.40 0.46 0.49
PSNR - Peak signal‑to‑noise ratio; SSIM - Structural similarity 
index measure

Table 2: Peak signal‑to‑noise ratio and structural 
similarity index measure comparison for second image

σ PSNR SSIM
Method

Shearlets Multishearlets Shearlets Multishearlets
5 35.55 37.08 0.79 0.85
10 31.75 32.32 0.71 0.75
15 29.57 29.55 0.64 0.66
20 28.05 27.53 0.58 0.58
25 26.82 25.81 0.52 0.50
PSNR - Peak signal‑to‑noise ratio; SSIM - Structural similarity 
index measureFigure 5: Result of the proposed scheme on 2 sample images
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