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Abstract
Background: Automatic segmentation of the choroid on optical coherence tomography  (OCT) 
images helps ophthalmologists in diagnosing eye pathologies. Compared to manual segmentations, 
it is faster and is not affected by human errors. The presence of the large speckle noise in the OCT 
images limits the automatic segmentation and interpretation of them. To solve this problem, a new 
curvelet transform‑based K‑SVD method is proposed in this study. Furthermore, the dataset was 
manually segmented by a retinal ophthalmologist to draw a comparison with the proposed automatic 
segmentation technique. Methods: In this study, curvelet transform‑based K‑SVD dictionary 
learning and Lucy‑Richardson algorithm were used to remove the speckle noise from OCT images. 
The Outer/Inner Choroidal Boundaries  (O/ICB) were determined utilizing graph theory. The area 
between ICB and outer choroidal boundary was considered as the choroidal region. Results: The 
proposed method was evaluated on our dataset and the average dice similarity coefficient (DSC) was 
calculated to be 92.14% ± 3.30% between automatic and manual segmented regions. Moreover, by 
applying the latest presented open‑source algorithm by Mazzaferri et  al. on our dataset, the mean 
DSC was calculated to be 55.75% ± 14.54%. Conclusions: A  significant similarity was observed 
between automatic and manual segmentations. Automatic segmentation of the choroidal layer could 
be also utilized in large‑scale quantitative studies of the choroid.
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Introduction
The choroid layer  (the region between 
the outer choroidal boundary  [OCB] and 
the inner choroidal boundary  [ICB]) is 
a vascular structure in the posterior part 
of the eye between the sclera and retina 
and possesses some key roles in the eyes 
including oxygen supply and feeding of the 
retina  [Figure  1]. Several parameters such 
as age and some eye diseases affect the 
thickness of choroid.[1‑4]

Optical coherence tomography  (OCT) is a 
novel noninvasive imaging technique, which is 
applied to the imaging of the human retina.[5] 
The enhanced depth imaging OCT (EDI‑OCT) 
obtains high‑resolution cross‑sectional images 
of the choroid and has been used in recent 
works on choroidal segmentation.[6]

The main objective of automatic choroidal 
segmentation is to help ophthalmologists 

to monitor and diagnose eye diseases. 
This fact has made many researchers, 
all around the world, to focus on the 
subject. Most ophthalmologists segment 
this layer using manual or semi‑automatic 
techniques. The inhomogeneous intensity 
of the choroidal layer, low contrast of 
OCT images, and the presence of speckle 
noise have made automatic choroidal 
segmentation to be a challenging 
task.[7,8] To reduce speckle noise from 
OCT images, many traditional methods 
such as adaptive median and Wiener 
filtering,[9,10] median, and Lee filtering[11‑14] 
are suggested but these methods are often 
obscure in details and affect edges in 
an image. In this paper, we have used a 
new 2‑dimensional  (2D) curvelet‑based 
K‑SVD algorithm[15] to speckle noise 
reduction. Even though this method 
enhances intraretinal layers, with noise 
suppression and optimally despeckling 
OCT image, the texture preservation  (TP) 
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parameter, which is a measure of retaining texture in a 
region of interest (ROI), seems not to be satisfactory (TP 
would be close to 0 for severely flattened image and 
remains close to 1 at its best). Therefore, to correct 
these weaknesses and deblurring of the resulting images, 
we used an efficient Lucy–Richardson deconvolution 
algorithm[16] to enhance intra‑retinal boundaries and 
deblur the resulting images. Furthermore, we introduced 
a new method based on graph theory and curvelet 
transform, for automatic segmentation of the choroid 
in OCT images. The experimental results showed that 
automated extracted regions significantly matched with 
the manual segmentations helped the ophthalmologists 
in recognizing eye abnormalities.[17] Table  1 shows the 
reported Dice Coefficient in other studies and introduces 
them briefly.

Nowadays, much work has been done in the field of 
automatic segmentation of OCT images, therefore, a brief 
review of automatic choroidal segmentation methods is 
included here. Vedran Kajić et al.[18] used a neural network, 
machine learning using stochastic modeling, convex 
hull, Dijkstra’s shortest path, and active appearance 
model on spectral domain OCT  (SD‑OCT) images of 
12 adult eyes. Torzicky et  al.[19] used depolarization and 
the birefringence of the sclera, on polarization sensitive 
OCT images of five healthy subjects. To this end, Tian 
et  al.[20] proposed a gradient‑based graph search method 
on EDI‑OCT images of 45 healthy adults. Zhang et  al.[21] 
utilized a graph‑based multilayer segmentation method on 
3‑dimensional  (3D) SD OCT (3D SD‑OCT) images of 24 
normal subjects. Hu et  al.[22] proposed a gradient‑based 
multistage graph search algorithm on SD‑OCT images 
of 20 eyes from 20 healthy and 10 eyes from 10 
nonneovascular age‑related macular degeneration  (AMD) 
adults. Lee et  al.[23] used the 3D graph‑cut method in 
EDI‑OCT images of eyes with nonneovascular AMD. 
Lu et  al.[24]  presented a gradient‑based graph search on 
OCT images of 30 adult subjects suffering from diabetes. 
David Alonso‑Caneiro et al.[7] used edge filter, directional 
weight, dual brightness probability gradient, and the 
Dijkstra’s shortest path algorithm on EDI‑OCT images 

of 1083 pediatric B‑scans and 90 adult B‑scans. Danesh 
et  al.[5] used the largest gradient, dynamic programming, 
Gaussian mixture model, and wavelet features in 
EDI‑OCTs of 6 healthy adult subjects. Gerendas et  al.[25] 
proposed an Iowa reference algorithm on SD‑OCT images 
of 142  patients with Diabetic Macular Edema. Srinath 
et  al.[26] used adaptive Hessian analysis on OCT images 
of the posterior part of the eyes. Vupparaboina et  al.[27] 
used tensor voting, structural similarity index, and Eigen 
value analysis of the Hessian matrix on SD‑OCT images 
of 5 healthy adult participants. Chen et  al.[28] proposed 
gradual intensity distance, thresholding, graph min‑cut 
max‑flow, and the energy minimization methods on 
SD‑OCT images of 66 patients. Shi et al.[29] utilized a 3D 
graph search method on OCT images of 32 normal eyes. 
Twa et  al.[30] presented dynamic programming, graph 
theory, and wavelet‑based texture analysis technique on 
SD‑OCT images of 30 young adult subjects. Sui et  al.[31] 
used graph‑edge weights learned from deep convolutional 
neural networks on OCT images of 42 normal subjects and 
31  patients with macular edema. Chen et  al.[32] proposed 
a 3D graph search method on 3D SD‑OCT images of 
41eyes. Mazzaferri et al.[17] utilized a graph‑based method 
on SD‑OCT images of 280  patients. Al‑Bander et  al.[33] 
presented a deep learning algorithm on 169 EDI‑OCT 
images. Chen et al.[34] used convolutional neural networks 
on 62 EDI‑OCT images of patients with AMD. Wang 
et  al.[35] proposed the Markov random field, 3D nonlinear 
anisotropic diffusion filter, and level set techniques on 
3D OCT images of 30 healthy subjects. Hussain et  al.[36] 
presented Dijkstra’s shortest path algorithm on EDI‑OCT 
images of 10 subjects. Furthermore, Salafian et  al.[37] 
used Dijkstra’s algorithm in the neutrosophic space on 32 
EDI‑OCT images of 11 subjects. Masood et  al.[8] utilized 
deep learning techniques and morphological operations 
on OCT images of 21 individuals. George and Jiji[38] 
presented multi‑level contour evolution based on the 
Chan‑Vese algorithm while the dataset was the same with 
Danesh et  al.[5] Furthermore, a complete and detailed 
description of the latest relative automatic choroidal 
segmentation methods is presented in the study by 
Alizadeh Eghtedar et al.[39]

The challenging issues associated with automatic choroidal 
segmentation in OCT images include the depth of choroidal 
tissue, the vascular and heterogeneous structure of this layer 
makes recognition of the layer difficult task.[7] In this study, 
we try to cope with the mentioned challenges and present 
a new and fully‑automated technique for the segmentation 
of the choroid in EDI‑OCT images. To prevent inaccurate 
detection of choroidal boundaries, at first, the OCT images 
are preprocessed and the reflective layers above the Bruch’s 
membrane are removed, then the curvelet transform is 
used and curvelet coefficients are modified to enhance 
and fill the black shadowing effects. The graph‑based 
segmentation of ICB and OCB layers may be degraded 

Figure 1: A sample of an EDI‑OCT image of the choroid. EDI‑OCT ‑ Enhanced 
depth imaging‑Optical coherence tomography; ICB  ‑  Inner choroidal 
boundaries; OCB ‑ Outer choroidal boundaries
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because of the presence of these possible gaps due to 
large vessels.

This article is organized as follows: section 2 explains 
the algorithm used for denoising and enhancement of 
OCT images and automatic segmentation of choroidal 
thickness. Section 3 presents the used dataset and 
compares the performance of the manual segmentations 
versus the segmentations done with the proposed method 
and segmentations done with the method proposed by 
Mazzaferri et  al.,[17] also the comparison of choroidal 
segmentation of original images and the denoised images 
using the proposed method is given in this section. Finally, 
the paper discusses in section 4 and concluding points are 
given in section 5.

Materials and Methods
Preprocessing and denoising

Un‑preprocessed OCT images, like ultrasound images, do 
not have smooth appearances because of the presence of 
speckle noise that pollutes image features. By denoising 

OCT images, images quality can be improved leading to 
an accurate analysis of intra‑retinal layers including the 
choroidal layer. In other words, removing speckle noise 
and contrast enhancement in the OCT images corrects 
the structural heterogeneity in the OCB area, thus, the 
preprocessing step improves the choroidal segmentation. 
In this study, a 2D curvelet‑based K‑SVD algorithm[12] was 
used to the speckle‑noise reduction of OCT images. The 
dictionary size was 16  ×  256 for the coefficient matrix on 
scale 7 and was 16  ×  128 used for denoising the curvelet 
coefficient matrix on scale 6. Although this method 
has acceptable performance, the TP parameter was not 
satisfactory and the resulting images suffered from blurring 
effects, thus, an effective Lucy–Richardson’s deconvolution 
algorithm[13] was used to enhance and deblur the resulting 
images.

Lucy–Richardson’s deconvolution algorithm was 
originated from the theorem of Bayes by Lucy and 
Richardson in the 1970s.[40,41] Among the various 
deconvolution algorithms been investigated in different 
studies, Lucy–Richardson has been reported to be 

Table 1: Graph‑based segmentation methods of the choroidal region in optical coherence tomography images
Author and 
year

Dataset and samples Denoising and preprocessing 
algorithm

Segmentation method Results

Tian et al., 
2012[18]

45 B‑scan from 45 healthy 
adult subjects

Wiener filter and N‑point 
moving average

Gradient‑based graph search 
and dynamic programming

Mean dice 
coefficient=90.5%±3%

Zhang et al., 
2012[19]

24 normal subjects were 
imaged twice on the same 
day

A three‑stage approach to 
change the contrast of the 
silhouette regions

Graph‑based method. Dice coefficient=78%±8%

Lu et al., 
2013[20]

30 adult subjects with 
diabetes

Not mentioned Gradient‑based graph search, 
and dynamic programming

Mean dice 
coefficient=92.7%±3.6%

Alonso‑Caneiro 
et al., 2013[7]

90 adult B‑scans from 15 
healthy subjects and 1083 
pediatric B‑scans from 
104 healthy subjects

A coarse average filter with 
a rectangular size of 5×22 
pixels, to smooth the image

Dijkstra’s shortest path 
algorithm, directional weight, 
Edge filter, dual brightness 
probability gradient

Mean dice 
coefficient=96.7%±2.1%

Vupparaboina 
et al., 2015[21]

97 B‑scans per eye, from 5 
healthy adult subjects

The BM3D algorithm Tensor voting, structural 
similarity index, and 
eigenvalue analysis of the 
Hessian matrix

Mean dice 
coefficient=95.47%±1.73%

Shi et al., 
2016[22]

32 normal eyes Linear mapping and a cross 
bilateral filtering

3D graph search method with 
the gradient‑based cost

Mean dice 
coefficient=93.17%±1.30%

Al‑Bander 
et al., 2017[23]

169 EDI‑OCT images The intensity values given 
closer to the sclera were 
multiplied with the cumulative 
sum, to increase the contrast of 
the ROI

Deep learning 
algorithm (CNN)

Dice coefficient=89.76%

Chen et al., 
2017[24]

62 EDI‑OCT images of 
patients with age‑related 
macular degeneration

Not mentioned CNN Mean dice 
coefficient=82%±1%

Wang et al., 
2017[25]

30 images from 30 healthy 
subjects with the ages 
between 20 to 85 years

Conventional anisotropic 
diffusion approach

Markov random field and 
level set methods

Mean dice 
coefficient=90%±4%

Masood et al., 
2019[8]

525°CT images (25 scans 
from every 21 subjects)

Reconstruction approach based 
on the morphological opening

Deep learning and a series of 
morphological operations

Mean dice 
coefficient=97.35%±2.3%

EDI – Enhanced depth imaging; 3D – Three dimensional; OCT – Optical coherence tomography; BM3D – Block‑matching and 3D 
filtering; ROI – Region of interest; CNN – Convolutional neural networks
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the algorithm with the most prosperous results.[16,42,43] 
This algorithm is commonly used due to its ability in 
recovering blurred and noisy images, which have been 
blurred by a known point spread function  (PSF).[16] The 
main formula of the algorithm is as follows:[16]

( ) ( ) ( )n+1 n
n

k (x,  y)g x, y g x, y u(‑x, ‑y)
u x,  y g  (x,  y)

=  
 

 
⊗ 

⊗  

� (1)

Where:

( )ng x, y is the undistorted image estimation in the 
nth iteration. The process of enhancement starts with 

( )0g x,  y  = k (x, y) and improves ( )ng x, y based on the 
original output image k (x, y) , and  u (x, y) is the PSF of 
the imaging system, Figure  2 shows the block diagram of 
the proposed method for OCT image despeckling.

Segmentation of inner choroidal boundaries and outer 
choroidal boundary

In this study, an automatic algorithm, based on Dijkstra’s 
shortest path graph‑search algorithm, that was fully described in 
following references,[44,45] is used to segment the ICB. Each pixel 
of the OCT image corresponds to a graph node and the link 
between two adjacent nodes is characterized by a weight value. 
By calculating the lowest weight between any two nodes on the 
entire graph the preferred path between them is determined by 
Dijkstra’s algorithm.[7] Therefore, Dijkstra’s algorithm uses paths 
with minimum weight and to help the graph to follow the ICB, 
there is a need to add a column of nodes with minimal weights (

minw ) to both sides of the image, which can be removed after 
segmentation. The following formula shows the weight of the 
edges which connect adjacent nodes i and j;[7]

( )ij i j minW = 2 ‑ g + g  + w � (2)

Where:

Wij is the weight assigned to the edge connecting adjacent 
nodes i and j, ‑5

minw  = 1 × 10 is the minimum weight in the 
graph, and gi, gj are the gradient information at node i and j. 
After calculating the weights maps, to determine the lowest 
weighted path of a graph between the start and end nodes, 
Dijkstra’s algorithm was used. The obtained path denotes 
the ICB boundary on the OCT images.[7] An example of the 
automatic segmentation of ICB is shown in Figure 3.

As mentioned earlier, the automatic detection of OCB is 
a challenging task, due to the depth of choroidal tissue, 
which makes this layer to be nonuniform.[7] In this study, the 
histogram of each OCT image was defined at a particular 
threshold adaptively based on the mean brightness of each 
image  (the input and output ranges of imadjust function in 
MATLAB were adaptively defined for each image based 
on the mean brightness of each image) in another word, by 
using imadjust function, the range of intensity values for 
each of the output images decreased adaptively based on 
the mean brightness of each image  (for example; the input 
and output ranges of imadjust function for the images with 
the mean brightness of 30 < < 36m set to minimum  =  0.15 
and maximum  =  0.20), in which the resulted images became 
pseudo‑binary images (black and white) as shown in Figure 4a. 
Finally, the pixels with maximum value in each column of 
the resulting images were found and a third‑order curve was 
assigned to these pixels  (using polyfit) that was considered 
as OCB. Figure  4b shows an example of the automatic 
segmentation of OCB. Figure  5 shows the block diagram of 
the proposed method for automatic choroidal segmentation.

Figure 2: Block diagram of the preprocessing and image enhancement method. OCT ‑ Optical coherence tomography
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Results
The proposed preprocessing algorithm was examined on 
17 publicly available 2D‑OCT images[46] of eyes with and 
without nonneovascular AMD and 60, 2D EDI‑OCT images 
obtained from Isfahan Feiz Medical Center were utilized 
to evaluate the proposed automatic choroid segmentation 
method, also, the brand of OCT machine in this study was 
Heidelberg Spectralis instrument  (Heidelberg Engineering, 
Heidelberg, Germany). The qualitative performance of our 

new proposed method on two different OCT images has 
been illustrated in Figure 6.

At first, the edge preservation  (EP), TP, mean to standard 
deviation ratio  (MSR), contrast to noise ratio  (CNR), and 
equivalent number of looks  (ENL) of the performance of 
our method was calculated for every 17 images. Then, 
the standard deviation and the mean of the EP, TP, MSR, 
CNR, and ENL of the performance of our method were 
compared to the famous denoising techniques  [Table  2]. 
Also, the visual comparison of these different denoising 
methods is illustrated in Figure  7. When the structures of 
the image were more flattened and the edges inside the 
ROI were more blurred, these measurements had smaller 

Table 2: Mean and standard deviation of the edge preservation, texture preservation, mean to standard deviation 
ratio, contrast to noise ratio, and equivalent number of look for 17 spectral domain optical coherence tomography 

retinal images by the use of three dimensional CWDL,[47] Tikhonov,[48] MSBTD,[46] K‑SVD,[47] K‑SVD based DCUT,[15] 
and proposed method

Original 3D CWDL[47] Tikhonov[48] MSBTD[46] K‑SVD[47] K‑SVD based DCUT[15] Proposed method
Mean±STD (EP)[49] 1±0 0.91±0.22 0.71±0.45 0.68±0.59 0.63±0.33 0.96±0.02 0.95±0.01
Mean±STD (TP)[49] 1±0 0.41±0.52 0.18±0.85 0.12±0.87 0.32±0.25 0.75±0.05 0.96±0.02
Mean±STD (MSR)[50] 3.20±0.46 14.45±4.85 7.64±0.63 14.76±4.75 11.22±2.77 14.36±3.85 29.33±20.18
Mean±STD (CNR)[51] 1.27±0.43 7.31±3.63 3.26±0.22 4.76±1.54 4.11±1.23 7.81±3.54 31.07±19.78
Mean±STD (ENL)[49] 38.09±4.35 2323.65±43.54 74.34±4.32 783.68+67.65 132.01±7.32 1983.08±39.42 69.51±138.12
Mean±STD (PSNR)[52] ‑ ‑ 23.67±0.96 26.46±1.72 26.13±1.70 17.96±1.08 15.55±1.75
The best result in the table is shown in bold. STD – Standard deviation; EP – Edge preservation; TP – Texture preservation; MSR – Mean 
to standard deviation ratio; CNR – Contrast to noise ratio; ENL – Equivalent number of look; 3D – Three dimensional; CWDL – Complex 
Wavelet-based Dictionary Learning; MSBTD – Multi-scale Sparsity-based Tomographic Denoising; K‑SVD – K-Singular Value 
Decomposition; DCUT – Digital Curvelet Transform

Figure 3: An example of automatic segmentation of ICB, is shown by the 
green line. ICB ‑ Inner choroidal boundaries

Figure  4:  (a) A threshold OCT image, (b) An example of automatic 
segmentation of OCB, which is shown by the red line, and also the ICB is 
shown by the green line. OCT: Optical coherence tomography; OCB: Outer 
choroidal boundary; ICB: Inner choroidal boundary

ba

Figure 5: Block diagram of the proposed method for automatic choroidal segmentation. ICB ‑ Inner choroidal boundaries, OCB ‑ Outer choroidal boundaries
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values approximate to 0. The TP and EP values in this 
table demonstrate the ability of our proposed method in 
preserving the image structures and edges.

At first, the mentioned data consisting of 60 EDI‑OCT 
images were manually segmented by a retinal 
ophthalmologist, then the automatic segmentation results 
of the choroid were compared to the manual segmentation 
applying dice similarity coefficient  (DSC). DSC is a 
statistical metric for comparing the similarity between two 
samples presented by Thorvald Sørensen and Lee Raymond 
Dice,[53] respectively in 1948 and 1945. Its formula  (given 
two sets, X and Y) is as the following:

X Y
DSC =

X Y
2
 

+


� (4)

The calculated mean DSC for choroidal segmentation of 
original images  (without preprocessing) was 71.99% ± 
16.56% and after preprocessing it was 92.14% ± 3.30% 
for our method, the box‑chart of these results is shown 
in Figure  8. To compare our method with a proposed 
method by Mazzaferri et  al.,[17] we implemented their 
open‑source algorithm on our dataset, the mean DSC 
of their proposed method was calculated as 55.75% ± 
14.54%. Figure 9 shows the manual, proposed automatic, 

and Mazzaferri’s automatic segmentation results of the 
choroid.

Discussion
The techniques based on graph searching have 
been widely used for automatic segmentation of the 
choroid.[5,7,17,18,20‑25,28-32,36,37] In this paper, a new method, 
based on curvelet transform and graph theory, was 
implemented for the automatic segmentation of the 
choroidal layer in OCT B‑Scan images. The preprocessing 
and speckle noise removal of OCT images are important 
and directly affect the results of automatic segmentation. 
For this reason, a  (2D) curvelet‑based K‑SVD[15] algorithm 
was used to suppress the speckle noise and maintain the 
subtle features of OCT images. Also, due to the unwanted 
blurring effect of the K‑SVD‑based denoising method, the 
resulted images were deblurred by the Lucy–Richardson’s 
deconvolution algorithm[13] and it provided improved output 
images when compared to the former studies  [Table  2] by 
taking the EP, TP, MSR, CNR, and ENL measures into 17 
SD‑OCT retinal images. This deconvolution‑based method 
utilized an estimated PSF along with transversal directions. 
The mean TP, mean EP, mean MSR and mean CNR were 
increased when compared to five other presented methods. 
Also, the value of the EP indicated that the proposed, 
method not only removed the speckle noise but also kept 
the edges very well. After preprocessing the OCT Images, 
as described in the methods section, the graph‑search‑based 
method was applied to automatic segmentation of the ICB 
and OCB.

We have compared the manual choroidal segmentation of 
an expert rater with the results of the proposed automatic 
segmentation algorithm on OCT images. The agreement 
between the automatic algorithm and the rater was 
significant and acceptable. An advantage of the presented 
method in comparison with other proposed techniques 
is that our method performed well in both high and 
low‑quality images, but most of the other identical methods 

Figure 6: (a) OCT Figure 1 containing speckle noise, (b) Enhanced OCT 
Figure 1, (c) OCT Figure 2 containing speckle noise, (d) Enhanced OCT 
Figure 2. OCT ‑ Optical coherence tomography

dc

ba

Figure 7: Visual comparison of different denoising methods. (a) The original noisy image; (b) The denoising result using the Tikhonov[48] method; (c) The 
denoising result using MSBTD[46] method; (d) The denoising result using K‑SVD[47] method; (e) The denoising result using K‑SVD based DCUT[15] method; (f) 
Result of the proposed denoising method

dc

b

f

a

e
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were efficient only in terms of the images with good 
quality. It was observed that the weak image intensity of 
OCB and the inhomogeneous intensity of this layer caused 
less disagreement between the manual and automatic 
segmentation on some OCT images.

Conclusions
The introduced method in this paper can improve the 
diagnosis of choroid‑related eye diseases. This algorithm is 
not so complicated and does not need any training; also, it 
gives precise results even in the presence of high speckle 
noise. Since our dataset consisted of both normal eyes and 
eyes with diabetic retinopathy and our method got acceptable 
results for both of them, this method can be useful in 
studying the choroid layer in both healthy and diabetic 
retinopathy eyes on a large scale. Future development of this 
method will be done by extending the 2D method to 3D and 
improving the segmentation of this layer and also increasing 
our dataset.
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