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Abstract
Background: This study was conducted to compare the response between the results of 
experimental data and the results achieved by the NARX neural network model to predict the 
electromyogram  (EMG) signal on the biceps muscle in nonlinear stimulation conditions as a new 
stimulation model. Methods: This model is applied to design the controllers based on functional 
electrical stimulation  (FES). To this end, the study was conducted in five stages, including skin 
preparation, placement of recording and stimulation electrodes, along with the position of the person 
to apply the stimulation signal and recording EMG, stimulation and recording of single‑channel 
EMG signal, signal preprocessing, and training and validation of the NARX neural network. The 
electrical stimulation applied in this study is based on a chaotic equation derived from the Rossler 
equation and on the musculocutaneous nerve, and the response to this stimulation, i.e., the EMG 
signal, is from the biceps muscle as a single channel. The NARX neural network was trained, 
along with the stimulation signal and the response of each stimulation for 100 recorded signals 
from 10 individuals, and then validated and retested for trained data and new data after processing 
and synchronizing both signals. Results: The results indicate that the Rossler equation can create 
nonlinear and unpredictable conditions for the muscle, and we also can predict the EMG signal with 
the NARX neural network as a predictive model. Conclusion: The proposed model appears to be a 
good method to predict control models based on FES and to diagnose some diseases.
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Introduction
In 1993, the National Institute of Health 
published a rehabilitation research program 
via the National Center for Medical 
Rehabilitation Research in the United States 
to improve daily activities.[1] Rehabilitation 
research included improving, restoring, 
and reducing the disability of people with 
severe physical disabilities so that they 
can return to the labor market.[2] It is 
essential to identify the current condition, 
disability, and ability of the patient before 
the disease and to use predictive tools to 
perform rehabilitation.[3] In addition, it 
includes a sociopsychological model that 
emphasizes physical function, mobility 
level, and physiological and environmental 
conditions and examines the patient’s 
needs for returning to work and the initial 
condition.[4]

One of the rehabilitation interventions in 
individuals is on the arm and biceps muscle; 
if they have a problem, it can cause many 
problems for the individual.[5] Biceps disease 
is a common physical disability requiring 
rehabilitation exercises and various 
functional electrical stimulations  (FESs) 
to initiate movement and strengthen the 
weak biceps muscle.[6] Furthermore, it is 
possible to measure the position of the 
biceps muscle by electromyography (EMG) 
and response to various stimuli, helping to 
analyze the muscle activity produced by the 
considered muscle and to diagnose some 
diseases.[7]

EMG refers to the electrical signal of 
muscles that is controlled by the nervous 
system and is produced during various 
muscle contractions or stimuli. This signal 
indicates the anatomical and physiological 
properties of muscles and includes two 
types: surface EMG  (sEMG) and muscle 
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EMG.[8] Moreover, it is beneficial to use EMG signals as 
electrophysiological signals in medical and engineering 
fields;[9] in other words, it is possible to use them in 
functional stimulation and intelligent artificial limbs by 
applying accurate information. Correspondingly, because 
EMG is produced by the nerve activation of the brain 
and spinal cord, it contains significant information on 
movement and diagnoses diseases.[10] The main method 
to understand many behaviors of the human body under 
normal and pathological conditions is presented by 
recording EMG signals. Several studies have described 
the function of EMG signal analysis and the validation 
of the biceps muscle with different age ranges, protocols, 
and placement of electrodes on the target muscle.[11] Some 
researchers have discussed the placement of electrodes on 
the biceps muscle during EMG measurements. The best 
place for EMG electrodes is in the area between the nerve 
and the tendon area to obtain high‑quality and stable sEMG 
signals.[12]

Accordingly, it is highly difficult to analyze and classify 
EMG signals due to the complex pattern of EMG, 
particularly when motion occurs, and sometimes, the 
biological signals become chaotic. Hence, one of the 
methods of EMG signal analysis is to create nonlinear 
conditions causing the signal to be chaotic. For this reason, 
recent studies on biological systems indicate that the 
structure and behavior of many of these systems, particularly 
the vital organs of the human body, are nonlinear, 
complex, and sometimes chaotic.[13‑17] Furthermore, most 
biomarkers enter the chaos applying external stimuli.[18,19] 
Consequently, it is required to use a black box modeling to 
model the output EMG signal based on a specific nonlinear 
stimulation, including chaotic equations. There are many 
models in the biological field, and each one has its own 
limitations. The usefulness of biological models is related 
to the field of various intelligent organs and FES that 
performs nonlinearly by the initial signals of the body or by 
the desired stimulation.[20] For example, biological models 
based on the EMG signal of the arm are utilized about the 
cybernetic hand. In addition, FES is used for patients with 
tremors, such as MS, Parkinson, intrinsic tremors, and even 
concussions, to reduce hand tremor based on contractions of 
the opposite muscle. It is also undeniable to predict EMG 
and its parameters to control the FES system. Therefore, 
one of the significant parameters affecting the control 
of hand muscles is nerve stimulation. Nerve stimulation 
depends on various parameters.[21] In other words, it is 
possible that changing the frequency and amplitude of the 
stimulation signal to the muscle changes the EMG signal, 
or changing the frequency and amplitude of the stimulation 
signal to the muscle can change the angle of the joint.[22] 
Most of the proposed biological models based on external 
stimulation to the hand muscles that were previously 
designed using nonlinear systems and mathematics, 
including chaotic equations  (which are the most similar 

ones to the biological system), have not been used in this 
study, and therefore, a new stimulation model derived from 
the Rossler chaotic equation is specifically utilized to create 
nonlinear conditions in the muscle. Among the biological 
models used, artificial neural networks  (ANNs) offer a 
new approach to the parameter estimation of linear and 
nonlinear models. The ability to learn ANN and generalize 
the behavior of each set allows to adapt to variable and 
dynamic environments and to have forecasting tools more 
flexible than traditional statistical models.[23] Hence, they 
are considered powerful modeling tools. Studies have 
indicated that it is possible that joint motion and related 
biological signals reflect the inherent dynamics of human 
movement; therefore, motor and biological signals can 
be applied to model the skeletal neuromuscular system 
to develop recurrent models for prediction.[24] Various 
methods have been proposed to predict EMG signals, and 
some of the related parameters, namely signal parameters 
such as biceps force, have been estimated for different 
loads to predict the angle of the joints.[25‑28] In some other 
methods, different parameters belonging to the signal, such 
as waveform length, root minimum square, slope sign 
change, zero crossing, and simple square integral, have 
been applied.[29‑35] Machine learning algorithm methods, 
including the support vector machine and random forest,[36] 
has been applied to predict muscle activity, none of which 
has predicted the EMG signal. In general, ANN is one of 
the most desirable methods for predicting activities related 
to the EMG signal of the upper limb.[37]

NARX is an effective way to solve consecutive nonlinear 
problems, and modeling in relation to the NARX model 
can better illustrate the nonlinear spatiotemporal correlation 
structure of the muscle and natural control signals. On the 
other hand, NARX models are different from other neural 
networks such that the model outputs as input for future 
predictions act in the form of feedback.[38]

NARX is extensively used to estimate joint angle, 
decode shoulder, elbow and wrist movements, and 
control prosthetic model.[39] Moreover, torque[40] and 
electrocardiogram signal have been predicted by the NARX 
neural network to optimal use FES system.[41] Given that 
the skeletal neuromuscular system is a time‑varying 
nonlinear system, one‑step forward prediction of the 
NARX model is introduced to construct a Gaussian 
process autoregression model that uses the prediction 
confidence interval to describe uncertainty.[42] The effect 
of model uncertainty on the results reduces the prediction 
and improves the rationality, accuracy, and efficiency of 
the common angle prediction model.[43] The current study 
records the EMG signal of the response by designing a 
new chaotic stimulation function and applying it to the 
musculocutaneous nerve. The stimulation signal and the 
EMG signal created by each stimulation are then applied to 
the NARX neural network to train and validate and retest 
the trained data and new data.
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Ultimately, this study was conducted to predict the EMG 
signal on the biceps muscle based on nonlinear stimulation 
applied by the NARX neural network as a new predictive 
method. Correspondingly, the true EMG signal of a muscle 
can be compared using the predicted signal with the 
NARX neural network, based on which some diseases can 
be diagnosed using this predictive model in addition to 
intelligent artificial limbs and functional nerve stimulation.

Methods
Study design and material

This study was conducted on 10 healthy and right‑handed 
individuals who were purposefully selected in 2021. This 
study was approved by the Ethics Committee of Islamic 
Azad University, Tehran Science and Research Branch. 
Then, the researcher referred to the place of the study and 
explained the necessary points on the objectives of the study 
after identifying the individuals. In cases where the person 
had the consent to participate in the study, the informed 
consent form was obtained from him/her, and 10 orders of 
the resting EMG signal during rest and during 414 s were 
recorded based on the same type of stimulation signal.

Inclusion and exclusion criteria

Inclusion criteria included individuals who were healthy 
and right‑handed, did not have any musculoskeletal 
problems, and were willing to participate in the study. 
Exclusion criteria included left‑handed individuals 
and individuals with musculoskeletal problems and 
dissatisfaction with participation in the study. Because 
there is a major difference between normal and paralyzed 
limbs (for example, spasm in a paralyzed limb), the results 
presented are not related to spasmodic limbs. Notably, 
the information of all individuals is confidential, and the 
researcher will not use the data in any other study.

Tools

In this study, the response obtained from the results of 
experimental data  (response to biceps muscle stimulation) 
was compared with the results of the NARX neural 
network model based on the applied stimulation. The 
study consisted of five stages:  (1) skin preparation, and 
placement of recording and stimulation electrodes, (2) how 
to place the person to apply stimulation and record EMG 
signal,  (3) stimulation and recording of single‑channel 
EMG signal,  (4) signal processing, and  (5) training, 
validation, and NARX neural network testing.
1.	 Stage 1: Surface electrodes used for recording were 

identical and were from the Skintact brand
2.	 Stage 2: The height‑adjustable table and chair were 

adjusted appropriately to each person’s height so that 
when each person sat down and placed his hands on the 
table, the angle of the shoulder and body was 90°

3.	 Stage 3: Adinstruments brand Powerlab 26T model, 
which was calibrated last month, was used as a single 

channel to record the EMG signal. The stimulation 
signal designed with the LabVIEW software interface 
was converted into an analog signal to be applied to the 
nerve by the National instrument model BNC‑2090

4.	 Stage 4: The noise caused by the power line from 
a hardware filter related to the powerlab26T device, 
which is considered a band stop filter and the frequency 
band of the power line, i.e., 50  Hz, was removed by 
passing a notch filter. All data obtained from this study 
were analyzed and validated in LabVIEW (NI company, 
Austin, TX 78759-3504, USA-TEXAS) 2018 and 
Matlab (Natick, Massachusetts, USA) 2020 software 
programs.  In addition, the characteristics of the 
stimulation signal were checked using the Tools box SP 
of matlab2020 software.

Rossler nonlinear dynamics

Muscle stimulation was performed using a type of 
chaotic equation, called the Rossler system, and applying 
stimulation to the musculocutaneous nerve, and the 
response was received in the form of EMG signals. The 
Rossler equation was considered in LabVIEW software 
version 2018 in accordance with Eq. (1) Rossler system.[20]

( )x = ‑ y+ x , y = x+ ay, z = b+ z(x ‑ c)   � (1)

The Rossler equation consists of three dependent variables 
x, y, and z with three control parameters a, b, and c ∈  R; 
changing each of these control parameters will change the 
trajectory and variable in terms of time. In some conditions, 
the shape of variable signal after passing through the period 
doubling will take chaotic properties.

NARX neural network

NARX neural network was used according to the nonlinear 
and biological nature of the problem. This network can 
be generalized much faster and better than other networks 
with recurrent dynamic feature and convergence, and it is 
a powerful modeling and validation tool. The output of 
the NARX network during training can be expressed by 
Eq. (2):

( ) ( ) ( ) ( )y t = f(y t ‑ 1 ,….y t ‑ 100 ,u t ‑ 1 , ….u(t ‑ D)) � (2)

where f is a function approximation describing the 
behavior of system via ANN; u(t) is the external input 
of the neural network, which is the signal of stimulation 
equation; y(t) shows the output of the neural network 
signal, which is the EMG signal expected for prediction; 
and D is the number of delay samples considered to start 
the prediction. In this study, the delay number 100 was 
selected by trial and error. In fact, u(t) is the stimulation 
signal, and y(t) is the EMG signal. During the training, the 
network behavior was predicted based on per 100  samples 
of the previous time series of the stimulation signal and the 
corresponding EMG, and it exits the NARX neural network 
as an ever‑stable behavior. In this study, a two‑layer NARX 
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network was applied as illustrated in Figure  1. According 
to Figure  1, y(t) returns to the input based on the values ​​
of the previous steps in addition to the output as feedback, 
and input u(t) is considered independently where IW is the 
input weights, LW is the layer weights, b is the biases, and 
f is the function approximation.

Results and Discussion
Stage 1: Skin preparation, placement of recording, and 
stimulation electrodes

The qualitative criterion for skin preparation is that the 
electrode site is slightly red due to abrasion; however, this 
does not mean that the skin surface is injured or damaged. 
For this purpose, the hair on the surface of the skin, arm, 
and wrist protrusion was cleaned with alcohol‑soaked 
cotton so that the skin was not damaged or injured. After 
drying the skin, the skin surface was rubbed with soft 
sandpaper.

Regarding the site of the electrodes, the individual was 
asked to fist his hand and bring it closer to the shoulder, 
which is called arm holding. By holding the arm, the 
biceps muscle appeared. Then, the peak of the muscle 
according to Figure  2 was the site of the center of the 
first electrode. Then, it was placed at a distance of 2 cm 
from the center of the first electrode and in its direction 
and toward the elbow of the second electrode. Indeed, 
the distance between the two electrodes was 2  cm so 
the first electrode was placed on the tip of the arm. In 
addition, the reference electrode was placed on the wrist 
bone.

Regarding the placement of the stimulation electrode, 
the suggestions provided by physical therapists and 
physiotherapists as well as previous researches were used. 
The results indicated that the location of the stimulation 
electrode should be on the site of 1.3 of the humerus bone 
and musculocutaneous nerve.[22]

Figure  2 shows that a line was directly drawn at the 
site of the bending elbow, and a line was horizontally 
drawn from the site of the coracoid bone appendage that 
was perpendicular to the line of the site of the bending 
elbow. It was selected as the site of the stimulation of 
the musculocutaneous nerve and the placement of the 
stimulation electrode by selecting 1.3 of this line and 
in the direction close to the midline of the body.[44] After 
installing two electrodes with a multimeter, the ohm value 
was recorded between the two electrodes. When the ohm 
value was more than 30, it was corrected by changing the 
recording electrode pair, re‑sanding, and increasing the 
electrolyte gel  (electrolyte gel was used to improve the 
electrical conductivity between the electrode and the skin). 
Table  1 illustrates the demographic characteristics of the 
samples.

Stage 2: How to sit to apply stimulation and record the 
electromyogram signal

The individual was asked to sit behind a desk to record 
the data. The person sat in a way that the soles of his 
both feet were completely on the ground, and the back 
was perpendicular to the back of the chair. The angle 
of the shoulder with the body was 90°, the angle of the 
elbow was 45°, and his hand was placed on a flat surface 
without protrusions. Various studies have evaluated the 
way of sitting person in this position many times, and the 
individual in this position sits completely naturally and 
feels comfortable  [Figure  3].[23] Zero angle was defined so 
that the forearm and arm were aligned with each other, the 
elbow angle increased with flexion, and complete elbow 
extension was created. In addition, he was asked to refrain 
from paying attention to the voluntary movement of the 
hand as much as possible so that the movement of the limb 
was only due to electrical stimulation and the limb was at 
rest (loose).

Figure 1: Two‑layer NARX network structure with s outputs[21]
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Stage 3: Stimulation and recording of single channel 
electromyogram signal

The stimulation signal applied to the biceps muscle was 
defined based on the Rossler chaotic equation so that the 
stimulation pulse ranging from 0 (without stimulation) to 8 
V was continuously transmitted to the biceps muscle in 414 
s based on the Rossler chaotic equation, and the maximum 
current values were 20  mA based on the standard of 
medical equipment and the range of the device used.[45] 
Owing to selection of the maximum stimulation voltage 
considering the maximum standard value of mA applied 
to the muscle and the skin resistance of the samples, this 
value was investigated experimentally up to 15V, and it 
was specified that the EMG signal will be chaotic at 0 
to maximum 8V. In the Rossler Eq.  (1), there are three 
chaotic control parameters a, b, and c that changing each of 
them changes the shape of the trajectory diagram and the 
diagram of its three variables, x, y, and z, during the time.

The two control parameters, b and c, were kept constant at 
values 5.7 and 2, respectively, and the control parameter “a” 
was regarded as the control variable. The control parameter 
of the stimulation increased from 0.1 to 0.3 during 414 s, 

each step by increasing 0.001, and the duration of each step 
was 2070 ms. Changing the control parameter “a” from 
0.27 by the period doubling method caused this system to 
enter the chaos. The Rossler system goes through periods 2 
and 4 and then enters the chaos. Since the Rossler device 
consists of three equations, its third variable, z(t), was used 
as the stimulation function by solving the equation in terms 
of time, including a set of period doubling compressed 
according to Figure  4. Because the maximum value of z 
was 9.98 V, and the minimum value was 0.17 V, in this 
study, the amplitude of z(t) equation was normalized 
between 0 and 8 V during 414 s.

In addition, the recorded EMG signal entered the chaos 
space based on the applied chaotic stimulation, and there 
was no longer a signal with  (repetitive pair period) period 
doubling so that it had a signal  (its chaotic part in infinite) 
lacking the alternation state of power two. This means that 
the signal is random and corresponds to the characteristics 
of biological signals, which is impossible to be predicted 
normally. All stimulation signals applied to the biceps 
muscle were simultaneously observed with an oscilloscope 
to reduce the error. The characteristics of the stimulation 
wave generated in Table  2 and the characteristics of the 
stimulation signal shown in Figure  4 demonstrate the 
complete characteristics of the signal encompassing the 
total duration of the stimulation signal and the stimulation 
voltage range at each time, duty cycle, and width pulse.

Electromyogram signal recording

A total of 10 orders of EMG signal were received from each 
individual based on ten orders of the same stimulation, and 
the distance between the two recordings was considered at 
least 10  min for each individual to prevent muscle fatigue 
and saturation of nerve stimulation. Furthermore, the human 
movement control system always controls the activities 
of the body in such a way that the highest efficiency is 
achieved with the least amount of fatigue in the muscles 

Table 1: The demographic characteristics of the study 
individuals

Demographic characteristics n (%) Mean±SD
Sex

Male 6 (60) ‑
Female 4 (40) ‑

Age (years) ‑ 2.41±32.25
SD - Standard deviation

Figure 3: How the person sits when the stimulation signal is applied, and the 
EMG signal is recorded (the image has been published with the individual’s 
consent). EMG: Electromyogram

Figure  2: Right figure(b): Location of the stimulation electrode and 
stimulation of the musculocutaneous nerve as well as placement of the 
reference electrode on the wrist. Left figure(a): Location of the recording 
electrodes along the drawing line to identify 1.3 of the humerus bone. The 
image has been published with the individual’s consent 

ba
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involved, and this type of activity is regarded as muscle 
synergy. Indeed, synergy creates a coordinated and optimal 
movement by creating a coordinated relationship between 
a group of role‑playing muscles in bending or opening the 
forearm. In this study, only the single‑channel EMG signal 
of the biceps muscle was examined instead of considering 
several muscles for bending and opening the forearm, and 
the issues related to force, torque, and so forth were not 
considered.

In this study, the synchronization of the stimulation signal 
with the EMG signal was performed; for this purpose, 
the Powerlab 26T device had the capability to generate 
the stimulation wave and to receive the EMG signal 
simultaneously. The two signals were synchronized by 
defining a pulse as a stimulant wave and using that pulse 
as a trigger wave in the national instrument. Moreover, the 
signal sampling rate was adjusted 4000 samples per second 
to preserve important samples of the signal and to comply 
with the Nyquist sampling condition.

Stage 4: Signal preprocessing

In this stage, the signal was preprocessed, and the unwanted 
artifacts and noise caused by the power line used during 
recording and stimulation were removed after recording 
the EMG signal from the previous stage. To remove the 
noise caused by power line, the pass signal was announced 
from a hardware notch filter.[46] The received digital signal 

was then passed through a high pass Butterworth filter 
with a cutoff frequency of 5  Hz and order 3. It was then 
passed through a low‑pass Butterworth filter with a cutoff 
frequency of 500 Hz and order 3. In addition, the recorded 
EMG signal was validated from 1 to 10 regarding the 
selection of the filter order, and in the third order, it had 
signal‑noise ratio of 28.63, which was higher than the other 
orders. In addition, the reason for choosing the selected 
cutoff frequencies is that it was formed out of the frequency 
range of 5–500  Hz, which was more than the noise in the 
EMG signal.[47] Figure  5 depicts the EMG signal diagram 
of one of the samples after passing through two filters for 
a 414 s. As Figure  5 shows, the maximum amplitude of 
the EMG signal is 0.68 mV, and the minimum amplitude 
is  −0.35. Figure  5 illustrates a part of the EMG signal in 
5–13 s for better display.

Stage 5: NARX neural network

At this stage, the NARX neural network with two layers 
was applied for training and modeling after recording 100 
EMG signals and their processing in the previous stages. 
By trial and error, there were 20 neurons in the hidden 
layer; the purelin transfer function was used in the first 
layer and in the output layer of the tan sigmoid. The initial 
values of weights and bias were considered zero. Then, 100 
initial delays were considered to define the NARX neural 
network equation. In other words, 100 prototypes of the 
stimulation equation time series and 100  samples of the 
EMG signal time series in proportion to the stimulation 
performed predicted the EMG signal time series for later 
times.

The initial input of the neural network was the first 
100  samples of the EMG signal and the first 100  samples 
of the stimulation signal. The output of the next predicted 
sample of the EMG signal as a recurrent with the 
sample of the stimulation signal was in proportion to 
the predicted sample number of the network input. To 

Table 2: The characteristics of the stimulation signal
Stimulation wave Unit
Frequency range 0-200 Hz
Maximum frequency 15.361 Hz
Mean 0.5456 V
Median 0.1566 V
The largest peak value 8 V
The minimum peak value 0 V
Pulse 1999

Figure 4: The characteristics of the stimulation signal (z(t)) applied to the muscle as a whole in 414s ranging from 0 to 8V
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improve the results of back‑propagation training, three 
improvement methods were validated: Conjugate Gradient, 
Quasi‑Newton, and Levenberg‑Marquardt, respectively, 
and the results indicated that the learning time and error 
of the Levenberg‑Marquardt method were reduced more 
rapidly than those of the other methods. In this study, this 
algorithm was used to train and improve the results.

The maximum number of epochs to train was 1000, the 
performance goal zero, the maximum validation failures 
6, the minimum gradient value 10−7, the initial mu values 
0.001, the decrease factor mu value 0.1, increase factor 
value 10, and the maximum value for mu 1010 in the 
training of this algorithm. Moreover, the loos function was 
considered the mean square error  (MSE). The training data 
included 100 EMG signals in which the stimulation signal 
was the same for every 100 signals. In addition, 70% of 
the data were used for training, 15% for evaluation, and 
15% for testing. The number of training repetitions was 
40 training repetitions, and the network was trained during 
1:14:54. Furthermore, the best MSE occurred in repetition 
27 during the neural network training, which is shown in 
the performance neural network diagram selected based on 
MSE in Figure 6. Furthermore, architecture and performance 
of the NARX neural network training are displayed in 
Figure  7 and Table  3. Figure  8 and Table  4 illustrate the 
regression of all 4 data sets; it was well matched to the 
target vectors and had an acceptable R‑value.

Finally, one of the 100  samples of signals present in the 
network training, testing, and validation process was 
randomly selected after completing the neural network 
training and applied to the trained NARX neural network. 
In other words, the first 100  samples of the EMG signal 

and the first 100  samples of the stimulation signal were 
applied to the model, and the model predicted the EMG 
signal based on the external stimulation from sample 101 
onward. Figure 9 shows the predicted EMG signal matched 
the actual signal well.

The predictor model of the stimulant‑based EMG signal 
was presented based on the NARX neural network and 
tested on one of the datasets. For better validation, the 
model was applied to five new EMG signals not included 
in the training, validation, and testing process as the 

Table 4: Output of the training, validation, and testing 
dataset

Output R
Training data 0.94
Validation data 0.91
Testing data 0.74
Total 0.9031

Table 3: Performance table of the NARX neural network 
training

Algorithms Data division Random
Training Levenberg‑Marquardt
Performance Mean Squared Error
Calculation MEX

Progress after 
training

Epoch 27 iteration
Time 1:14:54
Performance 2.27e‑5
Gradient 0.00246
Validation check 6

NARX - nonlinear auto regressive with exogenous input

Figure 5: EMG signal of one of the individuals after passing through the 
high‑pass and low‑pass filter for 5 to 13 s. EMG: Electromyogram

Figure 6: Network performance diagram based on the number of epochs 
and MSE for all three categories of training, testing, and validation. MSE: 
Mean square error

Figure 7: Architecture of the NARX neural network of proposed model
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network input. The network input, which was the first 
100  samples of the stimulation signal time series, in other 
words, the variable Z(t) of the Rossler equation, along with 

the first 100  samples of the EMG signal time series, was 
proportional to the stimulation, and the output predicted 
the EMG signal time series instantaneously proportional 

Figure 8: NARX neural network plot regression graph

Figure 9: Part of the predicted EMG signal existing in the network training process, along with the recorded signal. EMG: Electromyogram
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to the stimulation. Figure  10 displays the EMG signal 
predicted by the neural network for a new signal, along 
with the actual recorded signal. The actual signal and the 
EMG signal highly correspond to each other. Moreover, 
the prediction error signal shows an insignificant error. In 
addition, the average prediction MSE for five new signals 
by the proposed model is 0.0205.

Conclusion
Numerous studies have applied the neural network as a 
black box model to model the muscle and have reported 
successful results.[48] However, the neural network is 
usually applied to model or predict part of EMG signal 
parameters, such as prediction of torque using the NARX 
neural network,[49] prediction of the wrist angle based on 
the intensity of different loads on the muscle using the 
genetic algorithm,[50] prediction of the wrist angle based 
on the neural network and Kalman filter,[51] and prediction 
of the EMG signal from the Gait Kinematics and Kinetics 
using the NARX neural network.[52]

However, nonlinear electrical stimulation was not considered 
in any of the previous methods to predict the EMG signal. 
Because the behaviors of the muscle are nonlinear, it was 
required that the muscle to be stimulated via a nonlinear 
model, in which a new chaotic stimulation equation was 
applied to the muscle. The results indicated that this type 
of stimulation could cause nonlinear and chaotic behavior 
in the EMG signal. Afterward, the EMG signal, which had 
chaotic properties, along with the stimulation signal, was 
applied to the NARX neural network as a new predictive 
model for training and validation. The results indicated that 
the NARX neural network could well predict the EMG 
signal under a nonlinear stimulation; in addition, owing to 
its recurrent properties compared to the predictive methods 
based on the Kalman filter or the feed forward network, 
ARX, Hammerstein‑Wiener had fewer errors. There was 
also a maximum and significant agreement between the 
EMG output response and the output response caused by 
the NARX neural network. Therefore, it can be stated 
that the NARX neural network can be useful to predict 
the EMG signal of the biceps muscle; however, it should 

Figure 10: (a) Part of predicted new EMG signal along with the recorded signal. (b) Part of the predicted new EMG signal error. EMG: Electromyogram
b

a
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be noted that the model made for the biceps muscle in 
this study cannot be used for other muscles. Finally, it 
is possible to use the predictive model in this study to 
diagnose diseases of the biceps muscle by applying the 
nonlinear stimulation to it and receiving the stimulation 
response and then comparing the response between the 
model and the recorded signal from the muscle. Hence, we 
can validate and diagnose the clinical disorder to optimally 
control FES systems.
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