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Abstract
Background: This study evaluated the performances of neural networks in terms of denoizing 
metal artifacts in computed tomography (CT) images to improve diagnosis based on the CT images 
of patients. Methods: First, head‑and‑neck phantoms were simulated (with and without dental 
implants), and CT images of the phantoms were captured. Six types of neural networks were 
evaluated for their abilities to reduce the number of metal artifacts. In addition, 40 CT patients’ 
images with head‑and‑neck cancer (with and without teeth artifacts) were captured, and mouth slides 
were segmented. Finally, simulated noisy and noise‑free patient images were generated to provide 
more input numbers (for training and validating the generative adversarial neural network [GAN]). 
Results: Results showed that the proposed GAN network was successful in denoizing artifacts 
caused by dental implants, whereas more than 84% improvement was achieved for images with two 
dental implants after metal artifact reduction (MAR) in patient images. Conclusion: The quality of 
images was affected by the positions and numbers of dental implants. The image quality metrics of 
all GANs were improved following MAR comparison with other networks.
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Introduction
Complicated mechanisms such as 
beam‑hardening effects and photon 
starvation lead to metal artifacts in computed 
tomography (CT) images.[1] High‑density 
materials produce dark bands and/or 
streaking artifacts and severely reduce 
the quality of reconstructed images.[2,3] In 
particular, dental fillings lead to incorrect 
estimations of anatomical structures 
and CT numbers, leading to imprecise 
dose calculations for head‑and‑neck 
radiotherapy.[4] In treatment planning, metal 
artifact regions are manually defined and 
may be replaced by water to minimize 
their effects based on density correction.[5] 
However, this task is difficult and laborious, 
and a substantial interobserver variability 
may occur in manual tumor delineation, 
leading to errors in the calculations of 
doses.[6,7] Deep learning is a new method to 
reduce the number of metal artifacts in CT 
images. Deep learning has begun to be used 
extensively in recent years to handle many 
complicated tasks.[8]

Researchers attempted a straightforward 
method to use density overrides in 
the Pinnacle Treatment Planning 
Software (Philips Healthcare). In the 
planning system called Monaco (ELEKTA), 
a Monte Carlo algorithm is used to 
identify artifacts derived from the use of 
high‑density materials. The developers of 
Monaco contrasted the dosage calculation 
algorithms of two systems on CT images 
of patients without adjusting for either 
implant densities or encompassing 
tissues.[9] Convolutional neural 
networks (CNNs) are organized by metal 
artifact reduction (MAR) systems, where 
data of initial and corrected images are fused 
to remove artifacts.[10] In the damage stages, 
precorrected and uncorrected images were 
applied as input for the prepared CNN to 
create CNN images with reduced artifacts. 
The results demonstrated that deep learning 
could serve as a new means of addressing 
the reconstruction challenges of CT and 
may lead to a more precise estimation 
of tumor volumes for planning radiation 
treatment.[11] In another study,[12] a method 
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derived from a conditional generative adversarial neural 
network (cGAN) for reducing the metal artifacts in CT 
ear images of cochlear implant recipients was developed. 
Researchers tested cGAN using post‑implantation CT 
images of 74 ears and quantitatively assessed the quality of 
artifact‑corrected images by contrasting the segmentations 
of intracochlear anatomical structures in the genuine 
pre‑implantation with artifact‑corrected CT images. In 
a final study,[13] a useful strategy that employs GAN was 
proposed to reduce noise and protect texture elements in 
images. Several rehashed densely sampled B‑scan optical 
coherence tomography (OCT) images were utilized with 
multi‑frame enlistment to produce a denoizing generator.

In the current study, head‑and‑neck phantom images were 
simulated using MATLAB software. The artifacts were 
generated by dental implants (in random locations on the 
phantom images). After all, datasets were used as inputs in 
six types of neural networks using quality image metrics 
as well as loss and accuracy plots which is the novel 
approach presented in this study. The noisy and noise‑free 
head‑and‑neck CT images of patients were simulated by 
MATLAB to increase the amount of data, and the images 
were imported to train and validate the GAN network. 
MAR by the GAN network was affected by the positions 
and numbers of dental implants, which was another 
novelty. The limited quantity of input data for training and 
validating neural networks represents a limitation of this 
study.

Materials and Methods
Studies on simulated phantom images and patients first 
were described. Six types of neural networks were 
compared based on quality image metrics to choose the 
most efficient network for MAR in the patient study

Simulated phantom images

Head‑and‑neck phantom images were simulated by 
MATLAB R2019a (Math Works, MA, USA). The row and 
column numbers in the phantom images were specified 
as positive integers. Six numerical matrices were used to 
characterize ellipse parameters for the phantom images. For 
any given pixel within the yield image, the pixel’s value was 
increased to the entirety of the added substance intensity 
values for all circles of which the pixel could be a part, 
and when a pixel was not a part of any ellipse, its value 
was zero.[14] When metal implant and teeth densities were 
considered, dental implant densities on the head‑and‑neck 
phantoms were equal to 1.3 times the number of teeth in 
the phantom matrix in MATLAB.[15] Images that randomly 
showed an implant in the pixelated area of the dental 
segmentation were created. With an implant considered 
part of the dental segmentation in random positions, 3000 
images were created as neural network training data for the 
first step. For the next step, the radon function in MATLAB 
was used to transform those images into images with 

artifacts. Then, 600 noise‑free images and 600 images with 
dental artifacts were randomly created to validate the neural 
networks. With three dental implants considered as part of 
the dental segmentation with random positions, 200 images 
were created. Figure 1 shows head‑and‑neck phantom 
images with one implant for training and validation, three 
implants for testing, and one without any implant.

Neural network modeling

The data were transmitted to Google Colaboratory 
notebook by importing Keras, Numpy, Skimage, 
Matplotlib. Pyplot, Glob, and Tensorflow libraries. Codes 
for an autoencoder (AE), generative UNet, denoizing 
CNN (DnCNN), residual network (ResNet), visual 
geometry group (VGG) (a group of researchers at Oxford 
who developed this architecture) VGG, and GAN were 
separately trained by 3000 noisy images and 3000 
noise‑free images. These codes were validated by 600 
noise‑free images and 600 noisy images. Finally, networks 
were tested by 200 noise‑free and 200 noisy images.

All networks were designed to correct images with low 
artifacts as output and down‑sampled to a final 256 × 256 
resolution. With rectangular images considered, the images 
were rescaled, and the central patch of 256 × 256 was cut 
from the subsequent images for all networks. The losses 
and accuracies of the networks were compared in separate 
diagrams [Figure S1]. Networks were trained and run 
several times to identify the best hyperparameters for each 
network according to loss, accuracy, and image quality 
indices comparison. Hyperparameters were changed in 
each network and the architectures were developed to be 
appropriate for the MAR process which has mentioned 
in the introduction of each network. We developed 
networks and changed structures to make them unique 
for our study. Comparing these networks using image 
quality measurements is the validation of choosing the 
best network for patient study while has not done in other 
researches.

Denoizing convolutional neural network architecture

The DnCNN computes the difference between noisy and 
latent clear images. The CNN in this study had 20 layers, 
including rectified linear unit (ReLU) activation, batch 

Figure 1: Images simulated by MATLAB; (a) Original phantom image with 
no dental implant; (b) Phantom image with one dental implant, and (c) 
Phantom image with three dental implants

a b c
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normalization, and regression output layers with 1 × 1 
strides and 64 kernel filters of 3 × 3 in size. The loss 
function is defined as Eq. 1:[16]

Loss = (denoized images– noise‑free images)½/2 (1)

Auto encoder architecture

To build an AE, three components are required: Encoding 
and decoding methods as well as a loss function to compare 
the output and target. In this network, an encoder layer 
with eight latent dimensions, three kernel filters of 16 × 32 
in size, two strides, and exponential linear unit activation 
and convolutional two dimensional (2D) layer were used. 
The decoder layer was the same as the encoder used when 
the convolution layer was transposed. Latent dim was equal 
to 8, which shows the number of layers in the network. 
The mean square error was used as a loss function, which 
was imported from the Keras library.[17,18]

UNet architecture

The UNet architecture consists of two major sections and 
is symmetric. The first section is known as the contracting 
path and is based on the general convolutional process. 
The second part is the expansive path, which is developed 
using transposed 2D convolutional layers. Five layers are 
used in the first part, including convolutional 2D, batch 
normalization, ReLU activation, and drop‑out layers. It 
has maxpooling2D of 2 × 2 in size, and 16, 32, 64, 128, 
256 kernel filters of 3 × 3 in size. Similarly, five layers 
are used in the second part. However, in the second part, 
convolutional 2D transpose is used with the concatenating 
layers using similar information as in the first part. The 
drop‑out factor of each layer was 0.1, 0.1, 0.2, 0.2, and 
0.3, respectively, which helps the network to delete extra 
information. The loss function as a binary cross entropy 
was imported from the Keras library.[19,20]

VGG16 architecture

VGG16 is a CNN model. Our network consisted of five 
blocks with the number of 16, 32, 64, 128, 512 kernel 
filters of 3 × 3 in size, convolutional 2D fully connected 
layers with drop‑out and maxpooling2D of 2 × 2 in size, 
and bilinear upsampling 2D of 32 × 32 in size. The 
drop‑out factor of each block was 0.1, 0.1, 0.2, 0.2, and 
0.5, respectively. ReLU activation layers were used, and 
the stride was 2 × 2. The mean square error was used as a 
loss function imported from the Keras library.[21,22]

ResNet architecture

This network consisted of five blocks and each block 
consisted of bit channels, convolutional layers with a drop‑out 
layer, four kernel filters with (4, 4, 16), (8, 8, 32), (16, 16, 
64), (32,32, 128) in size and bilinear upsampling 2D of 
32 × 32 in size. The drop‑out factor of each block was 0.1, 
0.1, 0.2, 0.2, and 0.2, respectively. The mean square error was 
utilized as a loss function imported from the Keras library.[23,24]

Generative adversarial neural networks architecture

As an extraordinary model of the neural network, 
the GAN includes two networks that are trained 
simultaneously: One focused on image generation, the 
other centered on segregation. The Pix2Pix algorithm 
was previously proposed for performing image‑to‑image 
translation.[25,26] The generative network continues 
generating images that approximate the genuine images 
when the discriminator attempts to recognize the contrasts 
between fake and genuine images. It can then denoize the 
artifacts. The GAN architecture employed in this study, 
in which the library of computer vision was imported, is 
depicted in Figure 2. The generator received noise‑free 
and noisy images as inputs, and we attempted to use the 
discriminator to reconstruct images that were similar to 
noise‑free data in the epochs. The epoch number was 
200, but due to the small sizes of the metal implants, this 
network was unable to reconstruct implants. The generator 
and discriminator networks consisted of UNet and a 
convolutional network, respectively. Sixty‑four kernel 
filters of 4 × 4 in size with Leaky ReLU activation, batch 
normalization with the same padding, upsampling 2D, 
convolutional 2D transpose with the concatenating layers 
and loss function of binary cross‑entropy were used as 
generator structure while using similar information as in 
the first part except using transpose convolutional 2D as 
discriminator structure were the architecture of the GAN 
network.[27]

Quality image metrics

All images were compared using image quality 
measurements. The measurements included normalized 
root‑mean‑square error (NRMSE), peak of signal‑to‑noise 
ratio (PSNR), contrast‑to‑noise ratio (CNR), and structural 
similarity index between two images (SSIM). These metrics 
were calculated using a Google Colaboratory notebook by 
writing codes for estimating the quality of whole images.[28] 
To compare quality image indices, noise‑free images were 
compared to noisy images. Noise‑free images were also 
compared to denoized images to observe each network’s 
success in denoizing. The values for mean and standard 
deviation (std) in CNR, PSNR, SSIM, and NRMSE for all 
codes were calculated to compare networks. If high mean 
values and lower std values were obtained in calculating 
CNR, PSNR, and SSIM and lower mean and std values 
were derived with the NRMSE metric, this indicated that 
the image quality obtained by that neural network was the 
best.

Patient study

To produce training and validation data for the GAN, 
40 CT images of patients with head and neck cancer 
were acquired on a syngo CT VC40 (Siemens, Shanghai 
Medical Equipment Ltd.) with slice thickness 1 mm and 
an in‑plane resolution of 512 × 512 pixel. Image of dental 
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area slices were then segmented using RadiAnt DICOM 
software (version 5.0.1). The images were then exported 
to MATLAB software. The matrix of images was loaded 
in MATLAB and one or two dental implants were added 
to random locations of the segmented parts of the images. 
Dental implant densities added to matrix were equal to 
1.3 times the number of teeth as depicted in Figure 3. 
Histogram equalization code was used in Python 3.7 to 
change the gray levels of all images to + 128 from − 128 
which is vital that all images have the same gray levels 
and pixels.[29] In total, 8000 noisy and normal teeth images 
were generated for training in addition to the 2000 noisy 
and noise‑free images for GAN network validation. This 
generation was done by “Image Data Generator” class by 
importing Keras library in python for image classification, 
this class will help us to train and generate more data for 
the GAN network with 450 epochs. Forty CT images of the 
patients were finally used for GAN network testing.

Comparisons were made of images before and after 
denoizing using three and four Region of interest (ROI) of 
images with one and two dental implants, respectively. ROI 
of images were located in center, the buccal area near metal 
implants and oral cavity, which is shown in Figure 4. These 
regions were selected with the same X and Y axes and 

areas (155 mm2) in noisy and denoized images using ImageJ 
software (version 1.52a). Using this software, we estimated 
the max, min, mean, and std of gray levels. The formulas to 
calculate these quality image metrics are as Eq. 2:

CNR = (max‑min)/std

PSNR = 10 log (max2/std)

NRMSE = √ (max2 + min2)/CNR (2)

The process flows for training, validating, and testing 
the network are shown in Figure 5. Calculating image 
improvement after denoizing for each network is shown 
in the Eq. 3. A, B, and C denote the differences in 
image indices between noisy and denoized images. The 
improvement was defined using the average A, B, and C 
values. Numbers 1 and 2 refer to image indices between 
noise‑free and noisy images and between noise‑free and 
denoized images, respectively.

Mean A = (CNR2–CNR1)/CNR1

Mean B = (PSNR2–PSNR1)/PSNR1

Mean C = (SSIM2–SSIM1)/SSIM1

Improvement for each Network = ([A + B + C]/3) ×100 (3)

Figure 2: Generative adversarial neural networks architectural flow, with generator and discriminator architecture of network shown separately in blue 
rectangles

Figure 3: Images for training the generative adversarial neural network. (a) Original image, (b) Histogram equalization on original image, (c) simulated 
image with one dental implant, (d) simulated image with two dental implants used for GAN training and validation of input data

dcba
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Results
Phantom study results

Figure 6 shows test images after the number of metal 
artifacts was reduced using DnCNN, UNet, and GAN. 
Figures S1 and S2 show loss and accuracy diagrams for 
training and validation, respectively, according to the 
network shown. For all networks except for the GAN, 
Figures 6 and S2 indicate that denoized images had less 
contrast and resolution as compared with images before 
denoizing. However, a comparison of image quality factors, 

loss, and accuracy plots of networks [Figure S1], which 
were very low in terms of achieving high‑quality images, 
showed that these five codes are not suitable for medical 
image processing and treatment. Still, GAN was more 
successful in denoizing images.

Table 1 shows image quality metrics between noise‑free and 
noisy images. In addition, based on the image indices of 
CNR, PSNR, NRMSE, and SSIM for the six architectures 
following the denoizing of metal artifacts, denoized and 
noise‑free images were compared, as shown in Table 1. 
A comparison of image indices as shown in Table 1 reveals 
that for the AE, UNet, and VGG architectures, only the 
CNR metric was improved after denoizing. For DnCNN 
and ResNet architecture, all image indices worsened. All 
GAN network metrics were improved after MAR, and the 
denoized images were very clear after noise reduction. 
While some previous studies showed the successful 
ability of networks in the MAR process, statistics related 
to image improvement as listed in Table 1 show that the 
GAN’s improvement was 14%, whereas other network 
improvement was <zero.

Patient study results

CT images of patients were denoized and are depicted in 
Figure 7, which shows that image contrast was qualified. 
The quality indices of images were calculated between 
denoized and noisy patient images, and their improvements 
are shown in Table 2. A statistical analysis of Table 2 

Figure 5: Flowchart of image reduction process with six types of neural networks and patient study

Figure 4: Location of ROIs in patient image; (a) With one dental implant, (b) 
With two dental implants

b

a
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showed that CT images of patients with one and two dental 
implants were improved in all ROI. Our results revealed 
that the centers of images showing a single dental implant 
were improved by 12.87% in terms of quality image 
metrics between noisy and denoized images. In the right 
buccal space (when the implant was on the left side of 

the patient’s mouth), there was a 14.45% improvement in 
terms of image quality indices between noisy and denoized 
images. In the oral cavity, a 37.32% improvement in terms 
of image quality metrics was obtained, which appear near 
strong streaks in the images as a result of dental implants, 
and image improvement was more evident compared to 

Table 1: Quality image metrics for six neural networks after denoising between noise‑free and denoized images as 
compared with metrics before denoizing between noise‑free and noisy images obtained from python

Networks Mean (SD) Improvement (%)
CNR PSNR NRMSE SSIM

Comparison between noise‑free and noisy images 0.96 (0.002) 23.39 (0.16) 0.22 (0.004) 0.81 (0.006)
Comparison between noise‑free and denoized 
images

AE 1.29 (0.0004) 17.29 (0.01) 0.45 (0.0005) 0.52 (0.0009) −7.78
UNet 1.16 (0.006) 15.12 (0.004) 0.58 (0.0003) 0.26 (0.0001) −28.21
DnCNN 0.62 (0.02) 23.26 (0.1) 0.23 (0.002) 0.64 (0.01) −18.85
ResNet 0.81 (0.01) 15.26 (0.4) 0.58 (0.03) 0.41 (0.02) −33.03
VGG‑16 1.22 (0.009) 15.32 (0.01) 0.57 (0.0008) 0.39 (0.0003) −19.76
GAN 1.01 (0.01) 29.09 (0.1) 0.12 (0.002) 0.91 (0.005) 14

SD ‑ Standard deviation; CNR ‑ Contrast‑to‑noise ratio; PSNR ‑ Peak of signal‑to‑noise ratio; NRMSE ‑ Normalized root‑mean‑square 
error; SSIM ‑ Structural similarity index measure; AE ‑ Auto encoder; DnCNN ‑ Denoizing convolutional neural network; 
ResNet ‑ Residual network; VGG ‑ Visual geometry group; GAN ‑ Generative adversarial neural

Figure 6: Noise‑free, noisy, and denoised images obtained from popular networks. (a) UNet; (b) Denoising convolutional neural network; (c) Generative 
adversarial neural network

c

b

a
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parts that were remote from the implanted tooth. However, 
in CT images with two dental implants (when the implants 
were on the left and right sides of the mouths of patients), 
the improvement was greater near dental implants and 
less in other ROI. More than 84.5% improvement could 
be observed near dental implants, whereas improvement 
in the oral cavity and center of the image was less than 
those images of mouths with single dental implants. The 
GAN showed its high ability to denoize artifacts derived 

from dental implants, which are very small and have less 
density than high atomic number (Z) materials.[29] Results 
from images comparisons showed that the GAN network 
successfully denoized and qualified images with powerful 
artifacts caused by metal prostheses, particularly near metal 
areas. This improvement showed that the GAN network 
is successful near strong streaks and can reduce metal 
artifacts near high Z materials, especially in unclear images 
with more artifacts.

Discussion
Researchers investigated that the Cycle‑GAN can produce 
CT images that have realistic artifacts, which may provide 
a method of data augmentation. In Cycle GAN architecture, 
the PatchGAN discriminator only penalizes the generator 
at the scale of patches.[30] Considering Cycle GAN, we 
used UNet as the architecture of the generator, but we 
changed the discriminator architecture to CNN instead of 
using PatchGAN. On the other hand, we increased epochs 
number to 450 instead of 200 epochs to construct noisy 
images like healthy images.

Two multi‑layer CNN architectures for denoizing low‑dose 
CT images were surveyed: ResFCN and ResUNet. Training 
images were derived from realistic simulations using the 
XCAT phantom. The ResUNet approach indicated a PSNR 
of 44.00 as compared with 41.79 for ResFCN.[31] Using 
ResNet in our study showed less improvement in the PSNR 
metric in comparison to the GAN network.

A MAR method was proposed in another study[32] 3D 
adversarial nets were constructed using a regularized loss 
function designed for metal artifacts caused by multiple 
dental fillings. The suggested framework had an outstanding 
capacity for reducing robust artifacts and recovering the 

Table 2: Comparison of quality image metrics between noisy and denoized images of patients with one and two dental 
implants

ROI Image Mean Minimum Maximum SD CNR PSNR NRMSE Improvement (%)
Image with one implant

Center Noisy 160.97 110 208 22.05 4.44 2.43 111.6 12.87
D‑noise 166.09 128 199 15.78 4.49 3.34 111.55

Oral cavity Noisy 114.49 59 164 32.01 3.28 1.53 96.23 37.32
D‑noise 134.85 96 179 18.73 4.43 2.71 96.48

Right ‑ buccal Noisy 64.58 0 139 38.99 3.56 1.17 73.62 14.45
D‑noise 61.57 9 115 29.26 3.62 1.45 60.60

Image with two implants
Center Noisy 215.72 162 255 23.11 4.02 2.50 150.58 2.11

D‑noise 207.94 164 243 20.58 3.8 2.76 149.63
Oral cavity Noisy 223.22 48 255 59.85 3.45 0.96 139.52 16.44

D‑noise 222.42 111 255 39.91 3.60 1.45 146.42
Right ‑ buccal Noisy 113.99 0 253 86.52 2.92 0.66 147.95 84.55

D‑noise 93.47 48 150 25.98 3.92 1.82 79.48
Left ‑ buccal Noisy 124.95 0 255 107.01 2.38 0.54 165.19 84.75

D‑noise 76.76 18 162 37.24 3.86 1.31 82.88
SD ‑ Standard deviation; CNR ‑ Contrast‑to‑noise ratio; PSNR ‑ Peak of signal‑to‑noise ratio; NRMSE ‑ Normalized root‑mean‑square 
error; ROI ‑ Region of interest

Figure 7: Computed tomography images of a single patient. (a) Noisy 
computed tomography image with one implant, (b) Denoized computed 
tomography image with one implant, (c) noisy computed tomography image 
with two dental implants, and (d) denoized computed tomography image 
with two dental implants

dc

ba
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underlying missing voxels. To overcome the limitations of 
noise reduction using voxel‑wise regression, researchers 
in 2017 introduced[33] a noise‑reducing generator CNN 
together with an adversarial discriminator CNN to develop 
a GAN. Results indicated that training with voxel‑wise 
loss led to the highest PSNR with respect to referenced 
routine‑dose images. GAN training improves the ability 
of CNNs to produce images with similar appearances to 
reference CT images with routine doses. This achievement 
helps us to use the CNN framework as GAN’s discriminator 
architecture.

An effective method is suggested for reducing speckle 
noise and preserving texture details by the GAN. Several 
repeated densely sampled B‑scan OCT images were used 
in another study[13] that employed multi‑frame registration 
for denoizing generator training. Frequency‑based error, 
PSNR, and SSIM were compared using DCSRN, GAN, 
UNet, and SRResNet networks, with results yielding image 
metrics of 3.63, 27.81, and 0.90, respectively, which were 
achieved using a GAN architecture and we used GAN as a 
successful network for our patient study.

A comparison of quality image metrics between six types of 
neural networks on simulated CT images of head‑and‑neck 
phantoms made this study different from others that used 
two to four networks with two or three image metrics. 
Most previous studies have employed CNN algorithms and 
popular MAR algorithms. However, developed architectures 
for use in studying medical images were evaluated. GAN 
was developed as a successful network, particularly for 
denoizing dental artifacts near images of implants with 
high streaks based on a comparison of image quality 
indices between noisy and denoized images. The use of a 
GAN as a new approach was affected by the numbers and 
positions of dental implants.

Conclusion
Results showed that artifacts could be denoized using the 
GAN network, and genuine CT images showed >84% 
improvement in images with two dental implants in the 
buccal and lateral areas. In addition, an improvement 
of >37% was achieved for images with single dental 
implants in the oral cavity area when image quality 
metrics were considered. These regions are important 
for head‑and‑neck cancer treatment during radiotherapy. 
The CT image process using a GAN network will help 
specialists to conduct accurate diagnoses of tumor 
positions and to help cure patients. It may also be used in 
examinations of other tumors that have high Z materials to 
reduce metal artifact effects and thus help cure people with 
different types of cancers.
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Figure S1: Loss and accuracy plots. Comparing Model Loss and Accuracy plots gained by Python 3.7 of all networks in Figure 1. Which shows that all 
networks were efficient in artifact reduction process. Model Loss and accuracy of networks gained by; (a) Denoizing convolutional neural network; (b) 
Auto encoder; (c) UNet; (d) visual geometry group; (e) Residual network; (f) generative adversarial neural network
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Figure S2: Denoised images. Comparing healthy, noisy and denoized images gained by Python 3.7 of all networks in Figure 2. Which shows that generative 
adversarial neural network was more successful in denoizing metal artifacts. Healthy, noisy, and denoized images gained by; (a) Denoizing convolutional 
neural network; (b) Auto encoder; (c) UNet; (d) Visual geometry group; (e) Residual network; (f) Generative adversarial neural network
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