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Abstract
Background: Magnetic resonance  (MR) image is one of the most important diagnostic tools for 
brain tumor detection. Segmentation of glioma tumor region in brain MR images is challenging 
in medical image processing problems. Precise and reliable segmentation algorithms can be 
significantly helpful in the diagnosis and treatment planning. Methods: In this article, a novel brain 
tumor segmentation method is introduced as a postsegmentation module, which uses the primary 
segmentation method’s output as input and makes the segmentation performance values better. This 
approach is a combination of fuzzy logic and cellular automata  (CA). Results: The BraTS online 
dataset has been used for implementing the proposed method. In the first step, the intensity of each 
pixel is fed to a fuzzy system to label each pixel, and at the second step, the label of each pixel is 
fed to a fuzzy CA to make the performance of segmentation better. This step repeated while the 
performance saturated. The accuracy of the first step was 85.8%, but the accuracy of segmentation 
after using fuzzy CA was obtained to 99.8%. Conclusion: The practical results have shown that 
our proposed method could improve the brain tumor segmentation in MR images significantly in 
comparison with other approaches.
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Introduction
Image segmentation plays a vital role in 
image perception and interpretation in 
many fields and applications.[1] Moreover, 
it has a wide range of applications in 
medical area such as lesion classification, 
tumor segmentation, and tissue volume 
estimation.[1] There is a widespread 
algorithm for image segmentation to detect 
a pathology or abnormality in a subject.[2] 
The precise approach for tumor localization 
can play an essential and undeniable role in 
diagnosis and treatment planning in brain 
tumors.[3] Brain tumor contains enhancing 
tumor, necrotic tumor, and edema.[4]

As glioma is the most common type of 
brain tumor, most studies of brain tumor 
segmentation concentrate on this type of 
brain tumor.[2] There are many reasons 
for challenges in glioma segmentation. 
The first reason is the similarity of 
glioma and gliosis and stroke in magnetic 
resonance  (MR) images,[3] and the second 

reason is the appearance of glioma in 
most locations of the brain with different 
shapes and sizes. Moreover, there is no 
sharp boundary between glioma and 
normal tissue,[4] and there are many types 
of MR imaging  (MRI) data. Hence, using 
automatic brain tumor segmentation may 
be applicable for minimizing localization 
errors. However, there are no unique MRI 
protocols for heterogeneous tumors.[5]

A wide variety of brain segmentation 
approaches contain convolutional methods, 
supervised methods, unsupervised methods, 
and hybrid methods.[6,7] Convolutional 
methods include thresholding[8,9] and region 
growing.[10‑13] Thresholding is a simple, 
fast, and easy to implement method for 
image segmentation. The main idea of this 
method is based on converting an image to 
a binary image, and the threshold would 
be the decision value for making a pixel 
zero or one. There is no need for any 
prior knowledge for global thresholding, 
but this approach is not appropriate when 
two classes have different sizes,[14] so a 
combination of morphological operation 
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and the threshold value is introduced, which produces 
more accurate results.[9,15] In most images, there are more 
than two regions for segmentation; in these cases, more 
than one threshold value must be used as a local dynamic 
threshold.[16] Another approach of convolutional methods 
is a region growing. This approach is used for segmenting 
an image whose regions have the same intensity values. 
The main idea of this approach is that all pixels must 
be segmented in a region, all pixels of a region must be 
connected and have some similarity condition, regions must 
be separated, and two different regions must have different 
features.[17] This method can be used for images affected 
by lightning variation. The limitation of this method is the 
partial volume effect that blurs the border of two tissues.[18] 
This restriction has been removed by introducing multiple 
respiratory gas monitoring,[19] and this method has been 
used for making better results for tumor segmentation in 
T1 images.[10]

Another method for brain tumor image segmentation is the 
supervised method. This method uses labeled data to train a 
decision‑making system as a training phase for segmenting 
unlabeled data as a testing phase.[20] There are many 
supervised classifiers for brain tumor segmentation like 
k‑nearest neighbor,[21,22] Support vector machine  (SVM),[23] 
random forest,[24,25] artificial neural network  (ANN),[26,27] 
and neuro‑fuzzy networks. Unsupervised methods 
require no data for training, and the number of classes 
determined automatically by the algorithm. These 
methods use image‑based features such as the intensity of 
pixels, gradient, and texture of regions.[1] There are many 
unsupervised methods such as k‑means clustering,[28] fuzzy 
C‑means clustering  (FCM),[29] parametric active contour 
models  (ACM),[30] and geometric deformable models.[31] 
The other approach of brain tumor image segmentation is 
the hybrid technique. Hybrid techniques use two or more 
methods to provide better results of image segmentation. 
These techniques use the advantages of used methods to 
compensate disadvantages of other methods. The are many 
combinations of methods to make hybrid techniques such as 
the combination of FCM and SVM[32] and the combination 
of ACM and ANN.[33] Moreover, there are many studies, 
which used the cellular automata  (CA) as learning and 
supervised method.[34‑37] From comparing of mentioned 
methods, hybrid methods can present a better precision for 
brain tumor image segmentation, so in this article, a hybrid 
method will be presented and compare with other methods.

Materials and Methods
This article proposes a combination of CA and fuzzy logic 
as a hybrid method for brain tumor segmentation without 
any feature extraction. The structure of this combination is 
shown in Figure 1. This method uses the intensity of each 
pixel as input. This method consists of two major steps. 
In the first step, a fuzzy system uses the intensity of each 
pixels to label them as a tumor or host tissue. In the second 

step, the label of each pixel and its neighbors will be used 
by a fuzzy system to improve its label as CA. In this paper, 
CA uses the current label as input and analyses this by a 
fuzzy system to make the next and improved label. Hence, 
considering each labeled image as a frame, each frame 
will be produced by the last frame. The second step will 
be performed while the error of labeling is changing. The 
proposed method will be described as following.

As shown in Figure 1, there are two main sections to image 
segmentation in this study. At the first section, an image 
fed to a fuzzy inference system to label its pixels as tumor 
or host tissue. At this section, the input type is image and 
the output is label of pixels. Up to this point, the image has 
been segmented into host or tumor tissue. At the second 
section, the label feds to a fuzzy system to make improved 
label. Hence, it works as a CA, which its pixels attributes 
changes via time passing by considering the attributes of 
that pixel and its neighbors attributes. Hence, the second 
section is a CA that uses a fuzzy inference system a 
transition rules.

Magnetic resonance imaging brain image dataset

The imaging dataset of this study was obtained from 
BraTS 2015.[38] This dataset contains Fluid Attenuated 
Inversion Recovery (FLAIR), T1, T1c, and T2 scans with 
1 mm3 resolution. This dataset consists of 220 high‑grade 
gliomas  (HGG) and 54 low‑grade gliomas  (LGG) cases. 
The multimodal property of this dataset makes it possible 
to register the tumor into sub‑regions, as shown in Figure 2.

As this article aims to segment the whole tumor, the FLAIR 
scan is used to segmenting the whole tumor.

Proposed image segmentation algorithm

In this article, for segmenting a pixel as a tumor or host, 
the interaction between its neighbors is used. This task 
assigns a label to each pixel as tumor or host, and a label 

Figure 1: Diagram of brain tumor image segmentation using the combination 
of cellular automata and fuzzy system
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image will be produced, and this label image will be used 
to make the next label image. Interaction between pixels 
must be configured as equations or rules. These interactions 
are configured as a fuzzy system. This fuzzy system uses 
a label image with Moor neighborhood as input. Sugeno 
fuzzy system is used with three Gaussian membership 

functions as fuzzifier and center of gravity as defuzzifier. 
The proposed algorithm of brain tumor segmentation is 
described in the following pseudocode in Code 1. The 
pseudocode finds the best label  (tumor or host) for each 
pixel.

As described in Code 1, the image  (FLAIR) and the 
original label will be used for training a fuzzy system to 
make a label image. For this aim, the brightness of each 
pixel and its neighbors will be used as input, and the 
original label of the pixel will be used as output. With 
training and simulating the fuzzy system, the label image 
will be produced, which feeds to another fuzzy system 
as cells to make better labels. Finally, the improved label 
image will compare with the original label to computing 
the error. This procedure will repeat during error change.

Results
In this article, the proposed algorithm of brain tumor 
image segmentation is applied on the FLAIR scan, which 
is available as BraTS 2015 dataset, and tumor segmented 
brain images by radiologists have been used as the 
desired output of the method, as illustrated in Figure  3. 
In this study all 220 HGG and 54 LGG cases have been 
considered as dataset. This algorithm simulated using 
MATLAB R2015b version with 3.00 GHz core i5 central 
processing unit and 4 GB internal Random Access Memory 
as hardware devices. As it was mentioned, the used data 
set consists of 220 HGG and 54 LGG, and all these images 
have been labeled as host, whole tumor, enhancing tumor, 
and necrotic tumor by different expert radiologists. As this 
study aims to discriminate host tissue and entire tumor, the 
FLAIR scan has been used for segmentation.

To analyze the performance of the proposed algorithm 
and to compare with other approaches, the sensitivity, 
specificity, and accuracy have been calculated as below:

Where true positive  (TP) is the number of TPs, true 
negative  (TN) is the number of TNs, false‑positive  (FP) is 
the number of FP and false negative (FN) is the number of 
FNs.

Figure 3: (a) FLAIR scan of brain magnetic resonance imaging (b) Tumor 
segmented brain image by radiologists

ba

Figure 4: (a) Cropped FLAIR scan of Brain Magnetic resonance imaging, (b) 
Output of first step fuzzy system, (c) output of first‑round Fuzzy cellular 
automata,  (d) output of third‑round Fuzzy cellular automata  (e) output 
of fifth‑round Fuzzy cellular automata (f) output of seventh‑round Fuzzy 
cellular automata

dc

b

f

a

e

Figure 2: Sub‑regions of tumor in BraTS. The image was segmented into the whole tumor by FLAIR scan as yellow color on (a). The tumor core is illustrated 
by red color on the T2 scan (b). Enhancing tumor is showed by blue color, and the necrotic tumor is also shown by green color on T1c scan (c)[38]

cba
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As it has been mentioned in Code 1, there are two main 
steps for image segmentation. In the first step, a fuzzy 
system uses original images and tumor segmented brain 
images by radiologists to make new labels. In a second 
step, another fuzzy system uses new labels to make more 
accurate segmentation  [Figure  4]. The second step will be 
repeated while the accuracy achieves saturation  [Figure 5]. 
As this algorithm is time‑consuming, the images will be 
cropped manually.

As it is obvious from Figures  4 and 5, as the Fuzzy 
CA round number increases, the value of segmentation 
accuracy increases too, but the further increase of Fuzzy 
CA round number results from saturation in segmentation 
accuracy that causes to exit the second step’s loop.

The performance metrics such as sensitivity and specificity 
can show the validity of a methodology, and the increment 
of these metrics shows the strength of that methodology. 
The best accuracy, specificity, and sensitivity of this 
method are illustrated in Table 1.

Discussion
As mentioned, the main aim of this study is to increase the 
performance of a brain tumor image segmentation using a 
combination of fuzzy logic and CA. To achieve this aim, 
a simple segmentation method that uses the intensity of 
each pixel and fuzzy logic was used as a segmentation 
method which followed by fuzzy CA. The results showed 
that using Fuzzy CA improves the performance of image 
segmentation significantly, as illustrated in Figure  5. 
For more comparison, the performance of the proposed 
algorithm and other methods is shown in Table 2.

As it is obvious, there is a meaningful increment in 
all performance values in our proposed method. These 
results emphasize the fact that fuzzy CA can increase the 
segmentation performance, and this approach can be used as 
a postsegmentation module for having better segmentation 
performance, which uses the output of main segmentation 

method results as input and makes the segmentation more 
precise.

In this article, a new methodology to segment the glioma 
tumor in brain MR images. There are a few studies which 
used CA as an image segmentation method. For example, 
in[36] introduced an approach for brain tumor segmentation 
by combination of CA and improved tumor‑cut algorithm. 
That study used two paradigms, consisting image 
transformation and segmentation algorithm to introducing 
gray‑level co‑occurrence matrix based CA (GLCM‑CA). In 
GLCM‑CA, the CA works as a transformation to getting 
featured image and efficient tumor‑cut algorithm works as 
segmentation section, but in the current study, our proposed 
method uses the output of the main segmentation method 
and makes this more precise and can be used for most other 
segmentation methods. This article used a fuzzy system as 
the main segmentation method that used the intensity of 
each pixel as input the output of this method fed to the 
fuzzy CA to have better performance values. The results 
showed that there is a significant increment in performance 
values in comparison to the other approaches. This study 
focused on tumor segmentation, but this proposed algorithm 
can be used to segment other tissues, but its accuracy may 
be different and for more details, this algorithm must be 
implemented for other tissues.

Table 2: Comparing the performance of proposed method and other methods
Authors Methodology Sensitivity (%) Specificity (%) Accuracy (%)
Proposed method Fuzzy cellular automata 95.15 100 99.88
Selvapandian and Manivannan[39] ANFIS classification 92.3 96.2 95.9
Anitha and Raja [40] CNN classification 88.8 91.6 92.1
Pereira et al.[41] CNN classification 87.1 89.1 92.8
Urban et al.[42] Deep CNN classification 89.3 91.1 92.1
Islam et al.[43] Modified AdaBoost 90.9 91.5 93.4
ANFIS: Adaptive network‑based fuzzy inference system, CNN: Convolutional neural network

Table 1: Performance values of the proposed algorithm
Parameters Value (%)
Sensitivity 95.15
Specificity 100
Accuracy 99.88 Figure 5: Change of segmentation accuracy for the different round of Fuzzy 

cellular automata
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Conclusion
In this paper, a new method to improve brain tumor 
segmentation was introduced. This method uses the 
combination of cellular and fuzzy logic as a hierarchical 
approach, without causing overlearning. In this method 
a basic segmentation method would be considered, then 
the fuzzy cellular automata would improve the accuracy 
of segmentation. This method can be applied to different 
image segmentation algorithms.
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