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Abstract
Background: Due to imprecise/missing data used for parameterization of ordinary differential 
equations (ODEs), model parameters are uncertain. Uncertainty of parameters has hindered the 
application of ODEs that require accurate parameters. Methods: We extended an available ODE 
model of tumor-immune system interactions via fuzzy logic to illustrate the fuzzification procedure of 
an ODE model. The fuzzy ODE (FODE) model assigns a fuzzy number to the parameters, to capture 
parametric uncertainty. We used the FODE model to predict tumor and immune cell dynamics and 
to assess the efficacy of 5-fluorouracil (5-FU) chemotherapy. Result: FODE model investigates how 
parametric uncertainty affects the uncertainty band of cell dynamics in the presence and absence of 
5-FU treatment. In silico experiments revealed that the frequent 5-FU injection created a beneficial 
tumor microenvironment that exerted detrimental effects on tumor cells by enhancing the infiltration 
of CD8+ T cells, and natural killer cells, and decreasing that of myeloid-derived suppressor cells. The 
global sensitivity analysis was proved model robustness against random perturbation to parameters. 
Conclusion: ODE models with fuzzy uncertain kinetic parameters cope with insufficient/imprecise 
experimental data in the field of mathematical oncology and can predict cell dynamics uncertainty 
band.
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Introduction
Epistemic and aleatory uncertainties are the 
two sources of uncertainty in computational 
models.[1] Error in parameter estimation 
due to the lack of enough and accurate 
experimental data is the origin of epistemic 
uncertainty in dynamic models. The 
second source of uncertainty involves the 
uncertainty caused by random behaviors 
in the agents of stochastic/probabilistic 
models. The aleatory uncertainty can be 
considered as an intrinsic noise in systems 
biology.[2-4] There is an inherent noise in 
biological systems in various scales from 
subcellular networks to cell-cell interaction 
scale. In stochastic models, the behaviors 
and interactions of system components 
occur based on probabilities with specific 
functions, so with each execution of the 
stochastic model, we will find different 
but bounded dynamics.[5-7] In stochastic 
models, this band of uncertainty is limited 
to the heterogeneous environment, and 

behavioral and interactive diversity of 
system components.[8-12] On the other hand, 
deterministic models can’t produce aleatory 
uncertainty band of model agents.[13-15] 
Epistemic and aleatory uncertainties can 
be quantified by sensitivity analysis.[1,16,17] 
Sensitivity analysis is an essential step 
in understanding system behavior and 
interpreting its findings.[18-22] Stochastic 
models usually are computationally cost 
and they have not been developed as well 
as deterministic models in the field of 
immune/oncology mathematical modeling. 
Developing a method to capture epistemic 
uncertainty in deterministic models is a 
good step forward finding reliable outcomes 
in immune/oncological systems. In this 
study, we combined fuzzy theorem with 
an ordinary differential equation (ODE) 
model of tumor-immune system (TIS) 
to illustrate the process of fuzzification 
of a deterministic model. Fuzzy theorem 
can capture epistemic uncertainty 
of mathematical models. The fuzzy 
ODE (FODE) model can predict outcomes 
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of treatments for tumor eradication by considering the 
effect of epistemic uncertainty. Quantifying the effect of 
epistemic uncertainty on interactions of agents help us to 
predict the reliable outcomes of treatments.

The fuzzy theorem describes “possibility,” different 
from the “probability” theorem which studies random 
processes.[23] Fuzzy sets can deal with uncertain 
information. Fuzzy sets describe uncertainty caused by 
ambiguity, lack of knowledge, incomplete or missing data, 
imprecision, and errors of measurements. Since fuzzy 
uncertainty is an inherent feature of biological networks, 
many models in systems biology are based on fuzzy 
knowledge.[24-26] In a study, a fuzzy inference system was 
used to calculate the interaction rates of the continuous Petri 
net model.[27] It was shown that this model with the lowest 
kinetic parameters and using linguistic rules (qualitative 
description) about the interacting cells was able to capture 
the dynamics of the agents and simulate their behaviors.[27] 
In two studies, fuzzy parameters were used to model the 
uncertainties in the kinetic parameters of stochastic Petri 
net[28] and continuous Petri net.[29] The current study aimed 
to use fuzzy uncertain kinetic parameters for an ODE 
model and create a FODE model. This model was used 
to simulate the behaviors of a TIS in the fuzzy and crisp 
setting of kinetic parameters.

Mathematical modeling widely has been used to investigate 
the efficacy of different treatment strategies for various 
cancers. For instance, in a recent study, the efficacy of 
L-arginine and 5-fluorouracil (5-FU) therapies for the 
treatment of cancer was evaluated by a system of ODEs.[30] 
For the same purpose, in another study, a combination of 
radiotherapy and anti-PD-1 therapy by a discrete-time 
mathematical model was evaluated and temporal 
dynamics of TIS agents were captured.[31] Furthermore, 
in another study, the combination of a vaccine (GVAX) 
and anti-PD-1 therapy by a set of partial differential 
equations was evaluated and spatio-temporal dynamics 
of TIS constituents in‑silico environment were 
assessed.[32] Furthermore, in another study, the effect of 
anti-PD-1/PD-L1 therapy and anti-CTLA-4 using a set of 
ODEs and pharmacokinetic/pharmacodynamics equations 
was investigated.[33] All of these studies explored the 
efficacy of different treatment strategies regarding crisp 
values for kinetic parameters, whereas there exist various 
sources of uncertainty in biological networks including 
epistemic uncertainty. Predicting treatments outcomes in 
the presence of epistemic uncertainty help us to generate 
reliable outcomes consistent with what seen in experimental 
studies or in clinical trials. The current study aimed to 
evaluate the efficacy of 5-FU treatment in a fuzzy uncertain 
environment (in the different setting of fuzzy parameters) 
and explore how uncertainty of kinetic parameters affects 
the dynamics of agents in different time schedules of 5-FU 
treatment. For this purpose, the present study developed 
FODE model to capture the uncertain dynamical behavior 

of TIS agents and investigate how different regimens of 
5-FU therapy affect the uncertainty band of population of 
tumor cells/immune cells.

Cancer-related mortality is regarded as one of the leading 
causes of death around the world. According to global 
statistics, 27.5 million people will be diagnosed with 
cancer by 2040.[34] The immune system can organize 
immune responses and eliminate tumor cells by identifying 
tumor antigens. However, tumor cells have evolved into 
different pathways to escape immune surveillance and 
metastasize to other tissues. The immune system consists 
of two general types: innate immunity and adaptive 
immunity.[35,36] Natural-killer cells (NK cells) are cells 
of innate immunity that act as the first line of defense 
against cancer cells. NK cells prevent tumor growth 
with various mechanisms such as direct cell destruction, 
induction of programmed death through the expression 
of death-inducing Ligand (Fas), and tumor necrotic 
factor-related apoptosis-inducing ligand, production of 
proinflammatory factors such as interferon-gamma and 
nitrite oxide.[37] Regarding adaptive immunity, cytotoxic 
T-cells (CTL) are the most competent cells against tumor 
cells. Regulatory T-cells (Treg) and myeloid-derived 
suppressor cells (MDSC) are also recruited to the tumor 
microenvironment for modulating the immune responses 
in the tumor site.[38,39] MDSCs abundant in tumor tissues 
and secondary lymph nodes. MDSCs have inhibitory 
effects on the immune response through the production 
of inhibitory cytokines such as interleukin 10 (IL-10), 
transforming growth factor β, the production of reactive 
oxygen species, indoleamine oxidase, induction of Treg 
cells and inhibitory effect on the anti-tumor function of 
NK cells.[40,41] Chemotherapy drugs such as gemcitabine, 
5-FU, and paclitaxel suppress the activity and production 
of MDSCs, enhancing the protective immune responses 
against tumors.[42,43] Although many studies have pointed 
to the positive effects of inhibiting MDSCs for tumor 
treatment, the efficacy of the 5-FU treatment has remained 
questionable and requires further investigation.[44,45] The 
FODE model of the present study can predict 5-FU 
treatment outcomes and generate testable hypothesis for 
experimental studies.

Methods
In the first part of the methods the TIS and details of the 
ODE formulation of the system have been explained. In the 
following section, the fuzzification of the kinetic parameters 
of an ODE model for capturing the uncertainty band of the 
model’s constituents in response to the fuzzy uncertainty of 
kinetic parameters has been described. Finally, the results 
of this manuscript will be presented.
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Structure of the ordinary differential equation model of 
tumor‑immune system

The mathematical model for TIS interplays of this study has 
been derived from the model developed by Shariatpanahi 
et al.[30] The model is an ODE with deterministic rates in 
which the biological behaviors of TIS agents have been 
simulated. TIS of this study consists of tumor and NK cells, 
CTLs, and MDSCs. In the upcoming, the model equations 
will be expressed and the details description of the model 
parameters is provided in Table 1, but for more details the 
readers are referred to the.[30]

Cancer cells (C)

1/3

1

* * *dC Cmax C= aClog ‑ bNC TC ‑ dC, C =
dt C C( + )

l

‑η 
 
 

 (1)

Equation (1) describes the dynamics of tumor cells, which 

consists of four terms. The term CmaxaClog
C

 
 
 

 describes 

tumor cell growth rate in absence of treatment with carrying 
capacity (Cmax), the term *bNC  and *TCη  shows 
NK-mediated tumor cell and CTL-mediated tumor killing 
rate, respectively. The term represents the therapeutic effect 
of 5-FU, which reduces the tumor cell population by up to 
3 days after treatment (d = 0.7), and then the effect of the 
5-FU disappears (d = 0).[30]

Natural killer cells (N)
2

*
2

dN NC= ‑ fN + g ‑ pNC
dt h+C

σ  (2)

Equation (2) portrays the dynamics of NK cells, which 
consists of four terms. σ  is the representative of the constant 
influx rate of NK cells in the tumor microenvironment, fN 
can be interpreted as the exponential apoptosis rate of NK 

cells, 
h

2

2

NCg
+C

 and *pNC  suggest the recruitment rate of 

NK cells into the tumor microenvironment and inactivation 
rate of encountered NK cells with tumor cells, respectively.[30]

Cytotoxic T cells (T)
2

* *
2

dT TC = ‑mT + j + rNC S ‑ uTC  ‑ vT
dt k +C  

 (3)

In equation (3) the dynamics of CTLs has been modelled, 
which constitute of five distinct parts. The exponential 

apoptosis rate of CTLs has been described by mT, 
2

2

TCj
k +C

 

is the expressive term of the recruitment rate of CTLs into 
the tumor microenvironment, *rNC S  explains the activation 
rate of CTLs as a result of interactions of NK cells and 
accessible tumor cells that this stimulation rate is inhibited 
by MDSCs.[30] The uTC* and vT describe the inactivation 
rate of CTLs after encountering accessible tumor cells and 
the differentiation rate of CTLs into other phenotypes of T 
cells such as regulatory T cells (Tregs), respectively.[30,46]

Table 1: Crisp values of the model parameters
Parameter Unit Value Biological description Reference
a 1

day

1.45×10-1 El4-luc2 tumor growth rate in absence of treatment [30]

Cmax cell 1×1010 Tumor-carrying capacity [30]
b 1

cell× day

3.23×10-7 NK-mediated tumor killing rate [30]

η 1
cell× day

1.1×10-7 CTL-mediated tumor killing rate [30]

d 1
day

0.7 EL4-luc2 tumor apoptosis rate by low dose 5-FU treatment [30]

l 1
3cell

100 Depth of access of immune cells to tumor cells [30]

σ cell/day 1.4×104 Constant influx rate of NK cells [30]
f 1

day

4.12×10-2 Exponential death rate of NK cells [30]

g 1
day

2.5×10-2 Maximum recruitment rate of NK cells [30]

h cell2 2.02×107 Steepness coefficient of the NK cell recruitment curve [30]
p 1

cell× day

10^-7 Inactivation rate of NK cells after encounter with the tumor [30]

Contd...
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Myeloid‑derived suppressor cells (M)

2

1
1

‑ SminS = + Smin
+ (M ‑ Mmin)γ

 (4)

dM C‑ M +
dt q+C

ρ β α=  (5)

The suppressive effect of MDSCs on the stimulation rate 
of CTLs has been described in equation.[4] The last formula 
explains the dynamics of MDSCs in which is the production 

rate of splenic MDSCs, Mβ  and 
ca

q+c
 are the MDSC’s 

exponential apoptosis rate and MDSC’s expansion rate 
in an inflammatory environment, respectively.[30] Table 1 
contains more details about the kinetic parameters of the 
mentioned equations and their references.

Fuzzy ordinary differential equation

A fuzzy set of universal set χ is defined by its membership 
function:

: [0, 1]A   χµ →   (6)

For an element χ χ∈ , µA ( )x  determines the membership 

degree of element x  in fuzzy set A. The term µA ( )x  = 0  
means that the element x  is not a member of a fuzzy set  
A and in contrast µA ( )x  = 1 can be interpreted that the 
element x  fully belongs to the fuzzy set A. The values  

( ) 1A0 < x <µ characterize fuzzy members, which partially 
belong to the fuzzy set A.

As shown in figure 1, in the first step, the fuzzy number 
A of an uncertain kinetic parameter is partitioned into 
α-cuts, α ϵ [0, 1] with k levels, which the ith level of a is 

k ‑ i= , i
k ‑ 1

∈  {1,2,…, k}. Also,  ai of the fuzzy set A is 

a crisp subset of X, i.e., i
Aα  ={ x | (µA) ( )x ≥, ai, x ϵ X, ai 

ϵ [0, 1]}. Then the values x of crisp subset 
i

Aα of the ith 
α-cuts (ai) has been discretized to J points, therefore a subset 

x 1 2 J= {x ,x ,…,x }φ  has been generated (in this study the 
number of quantization points for each α-cut has been set 
to J = 5). ODE model has been executed with parameters 
Minimum and maximum values of population/concentration 
for each cells/cytokines have been found to capture lower and 
upper band of the uncertainty of outcome measures in this 
α-cut. By increasing the α value, the uncertainty band in the 
input parameter of the model declines, and if, α = 1, there is 
no uncertainty for the kinetic parameter (similar to the ODE 
model with crisp kinetic parameters). Therefore, with such a 
simple method, uncertainty to model kinetic parameters can 
be applied and the dynamic of cells may be calculated to find 
uncertainty bands of cells/cytokines dynamics.

In the following, fuzzification algorithm of kinetic parameters 
for the ODE model has been accurately described.

Table 1: Contd...
Parameter Unit Value Biological description Reference
q cell 1×1010 Steepness coefficient of the MDSCs production curve [30]
m 1

day

2×10-2 Exponential death rate of CTLs [30]

j 1
day

1×10-1 Maximum recruitment rate of CTLs [30]

k cell2 2.02×107 Steepness coefficient of the CTL recruitment curve [30]
r 1

cell× day

1.1×10-7 Stimulation rate of CTLs as a result of tumor cell and NK cell interactions [30]

u 1
cell× day

1×10-10 Inactivation rate of CTLs after an encounter with the tumor [30]

v 1
day

1×10-2 Differentiation rate of CTL cells to other T-cells [46]

Smin none 0.18 Minimum CTL proliferation factor due to inhibition by MDSCs [30]
γ Cell−2 6×10-3 Inhibition rate of CTL stimulation by MDSCs [30]
Mmin cell 2.5×106 Normal number of MDSCs in C57/BL6 mice [30]
ρ cell/day 0.25×Mmin Normal production rate of MDSCs [30]
β 1

day

0.25 Exponential death rate of MDSCs [30]

Α cell
day

7×106 MDSC expansion rate in EL4-luc2 tumor-bearing mice [30]

NK - Natural killer; CTL - Cytotoxic T-cells; 5-FU - 5-fluorouracil; MDSCs - Mediated by myeloid-derived suppressor cells
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Input: A FODE model.

Output: An uncertain band of each outcome measure.
1: For each α level, ai,i = 1,2..., k do
2: For each fuzzy number from uncertain kinetic 

parameters, denoted by lÖ , l = 1,2,…, L  do
3: Compute α-cuts of the fuzzy parameter, represented as 

i

i i
á l lA = L , U    

4: Discretize each α‑cut, 
i

Aα  and obtain J crisp values for 
each fuzzy uncertain number.

5: End for
6: For each combination Lc J∈  of crisp values for all 

fuzzy uncertain parameters do
7: Run ODE model for each combination to obtain 

dynamics ( )i L
cY c J∈

8: Obtain the minimum (MinUncertaintyoutputi= min ( )L
i

cc J
Y

∈ ) 
and maximum (MaxUncertaintyoutputi= max ( )L

i
cc J

Y
∈ ).

9: End for
10: Compute the uncertainty band (membership function) 

for each outcome measure
11: For each record of dynamics of model do
12: Upper Band = maxi=1,2...,I(MaxUncertaintyoutputi)
13: Lower Band = mini=1,2...,I(MinUncertaintyoutputi)
14: end for

All parameters of the model are uncertain and fuzzy 
numbers should be assigned to all of them, but by increasing 
the number of fuzzy parameters, the computational load of 
the model simulation increases exponentially. Therefore, 
for simplicity for each of the equations 1, 2, 3, and 5, one 
parameter has been chosen and the simulated model has 
been executed with the assigned fuzzy value to the selected 
parameter. As shown in Table 2, the fuzzy numbers with 
the triangular membership function are set to take into 
account ten percent more and less (as an uncertainty band) 
than that estimated in Table 1. All simulations in both crisp 
and fuzzy settings have been executed in MATLAB 2019a.

Results
The evaluation of the model will be begun in a crisp 
setting [Table 1] in which no uncertainty exists in kinetic 

parameters. So as to predict the dynamics of cells and 
evaluate the efficacy of different regimens (timing) of 5-FU 
treatment by in‑silico experiments the TIS interactions have 
been simulated. It can be derived that slow accumulation 
of immune suppressive cells such as MDSCs and Treg 
mediates tumor cell re-growth, 18–20 days after tumor 
injection. Therefore, 5-FU treatment from day 10 after 
tumor inoculation to inhibit the immune-suppressive effect 
of MDSCs in the inflammatory environment.[47]

Figure 2a and b depict the dynamics of tumor cells, NK 
cells, CTLs, and MDSCs in the crisp setting and by 
applying 5-FU chemotherapy on days 10,16, 22 after 
tumor inoculation on day 0 (under 5-FU treatment on days 
10, 16, 22, 28, 34, 40, 46, 52, 58, 64, 70, 76). Figure 2c 
and d show the inhibition percentage of the instantaneous 
tumor cell population by applying the 5-FU treatment on 
days 10, 16, 22 and 10, 16, 22, 28, 34, 40, 46, 52, 58, 64, 
70, 76, respectively. Assessment the model for different 
5-FU chemotherapy injection timings revealed that by 
3 injections of 5-FU (induction on days 10, 16, 22 after 
tumor inoculation on day 0), the tumor volume on day 
100 had been 600 times smaller than of its initial value, 
whereas with ten 5-FU injections (in days 10, 16, 22, 
28, 34, 40, 46, 52, 58, 64, 70, 76 after tumor inoculation 
on day 0), 100 days after tumor induction, the tumor 
volume was reduced to 1% of its initial inoculated value. 
Therefore, the simulations showed that with increasing 
5-FU injections, the tumor no longer grows and is 
almost eliminated while with fewer 5-FU injections the 
tumor regrowth and metastasize will be probable. To 
investigate the efficacy of 5-FU treatment for inhibiting 
the instantaneous tumor cell population, the inhibition 

Table 2: Fuzzy values of model parameters
ParameterTriangular fuzzy membership function parameters
a (0.9,1,1.1)×1.45×10-1

f (0.9,1,1.1)×4.12×10-2

m (0.9,1,1.1)×2×10-2

a (0.9,1,1.1)×7×106

Figure 1: (Left) Decomposition of a fuzzy uncertain kinetic parameter to its α‑cuts and (right) composition of a set of α‑cuts to create a membership 
function for fuzzy uncertain outcome measure
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percentage of tumor cells affected by different timings of 
5-FU treatment (10, 16, 22 in Figure 2c and 10, 16, 22, 
28, 34, 40, 46, 52, 58, 64, 70, 76 in Figure 2d) have been 
calculated. As it’s depicted in Figure 2c, 3-time injection of 
5-FU causes the tumor inhibition percentage on days 25 to 
reach its maximum level (because the last injection was on 
day 22 and the effect of 5-FU remains until three days after 
induction), and after that, the effect of the drug disappeared 
and tumor regrowth. In according to the Figure 2d by 
increasing 5-FU injections (10, 16, 22, 28, 34, 40, 46, 
52, 58, 64, 70, 76) the instantaneous tumor inhibition 
percentage remains close to 98% (even after discontinuation 
of 5-FU treatment on day 76) and the tumor cells are 
eliminated.

It has been found that frequent 5-FU treatment would 
inhibit the tumor, so for further investigation, the 
frequency of 5-FU treatment has been increased from three 
times (days 10, 16, 22) to twelve times (days 10, 16, 22, 
28, 34, 40, 46, 52, 58, 64, 70, 76) to capture the dynamics 
of inhibition percentage of tumor cells [Figure 3a] and 
MDSCs [Figure 3b] and the dynamics of relative population 
of NK cells [Figure 3c] and CTLs [Figure 3d] in treatment 
case to no treatment case. As the frequency of 5-FU 
treatment increases, the percentage of tumor cell, MDSC 
suppression, and population of NK cells and CTLs increase, 

respectively. This that antitumor treatment can improve the 
tumor microenvironment to exert detrimental effects on 
tumor cells, has been investigated in previous experimental 
studies. For example in a B16-F10 melanoma-bearing mice 
model, it was shown that the combination of radiotherapy 
and hyperthermia enhanced the infiltration of CD8+ T 
cells, NK cells, and CD11c +/MHCII +/CD86+ dendritic 
cells, and decreased that of MDSCs and regulatory 
T-cells.[48] In another study, the authors found that 5-FU at 
low doses can boost circulating NK cells.[49] Also, 5-FU has 
been used in acute pancreatitis to minimize the abnormal 
immune cytokines.[50] In this study, in silico experiments 
revealed that 5-FU can enhance the infiltration of NK 
cells [as depicted in Figure 3c] and CTLs [Figure 3d] in 
the tumor microenvironment and subsequently suppress 
MDSCs [Figure 3b] and tumor cells [Figure 3a].

The TIS model has been simulated in the fuzzy uncertain 
setting to capture the uncertainty band of tumor cells, 
NK cells, CTLs, and MDSCs in the presence or absence 
of 5-FU treatment. To assess the effect of uncertainty of 
kinetic parameters on dynamics of cells and for efficacy 
assessment of different timings of 5-FU treatment in the 
fuzzy uncertain environment, TIS has been simulated by 
setting the values of parameters (a,f) and (a,f,m,a) to fuzzy 
numbers, and three times (10, 16, 22) and twelve times (10, 

Figure 2: Dynamics of tumor cells, natural killer (NK), cytotoxic T cells (CTL), and myeloid‑derived suppressor cell (MDSC) in response to different timing 
of 5‑fluorouracil (5‑FU) treatment over time along with efficacy assessment of 5‑FU treatment regarding crisp values for kinetic parameters of the model. (a) 
The dynamics of cancer cells, NK cells, CTLs, and MDSCs (normalized to initial population) affected by 5‑FU treatment on days 10, 16, and 22 after tumor 
injection on day 0 and (b) by 5‑FU treatment on days 10, 16, 22, 28, 34, 40, 46, 52, 58, 64, 70 and 76 after tumor injection on day 0. (c) The instantaneous 
inhibition percentage of tumor cells affected by 5‑FU on days 10, 16, 22 and (d) by 5‑FU treatment on days 10, 16, 22, 28, 34, 40, 46, 52, 58, 64, 70, 76

dc

ba
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16, 22, 28, 34, 40, 46, 52, 58, 64, 70, 76) of 5-FU injection. 
Figure 4a-d portrays the uncertainty region of cancer cells, 

NK cells, CTLs, and MDSCs, respectively, regarding 
two uncertain kinetic parameters (a,f). The membership 

Figure 3: Prediction of the effect of the different timing of 5‑fluorouracil (5‑FU) treatment on TISTIS cells population. The treatment efficacy for different 
timing of 5‑FU was plotted as the percentage of instantaneous tumor growth inhibition (a) and percentage of instantaneous myeloid‑derived suppressor 
cell expansion inhibition (b). The ratio of the population of natural killer cells (c) and cytotoxic T cells (d) in different timing of 5‑FU treatment to their 
population in the control case (no treatment)

dc

ba

Figure 4: A three‑dimensional simulation plot of cancer cells (a), natural killer cells (b), cytotoxic T cells (c), and myeloid‑derived suppressor cells (d) for 
two different timing of 5‑fluorouracil treatment (same as those given in Figure 2) in the fuzzy setting of kinetic parameters. The two fuzzy uncertain numbers 
are given as follow: ( ) -1 = 0.9, 1, 1.1  ×  1.45× 10  α  and ( ) -2 = 0.9, 1, 1.1  ×  4.12 ×  10f
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function of uncertain a parameters f and are triangular (as 
described in Table 2). Three α levels have been dedicated 
for fuzzy numbers (α = 0, α = 0.5 and α = 1) and it has 
been concluded that there is negative correlation between 
the α and the uncertainty band of kinetic parameter. 
Actually, α = 0 corresponds to maximum uncertainty for 
parameters and α = 1 corresponds to the crisp setting of 
the model (no uncertainty exists). It has been proven that 
with increasing the frequency of 5-FU treatment from 3 to 
12 times, the population of cancer cells and MDSCs will 
be lessen (their uncertainty band shift left toward the lower 
population of cells), and the population of NK cells and 
CTLs increase (their uncertainty band shift right toward 
the higher population of cells). Also, with increasing the 
uncertainty level α from 1 to 0, the uncertainty band of all 
cells increases. So, 5-FU efficacy was demonstrated in both 
crisp and fuzzy settings. Figure 5 depicts the results of model 
simulation with four fuzzy uncertain numbers as mentioned 
in Table 2. To explore the effect of different timings of 
5-FU injection (first timing: 10, 16, 22, and second timing: 
10, 16, 22, 28, 34, and third timing: 10, 16, 22, 28, 34, 40, 
46, and fourth timing: 10, 16, 22, 28, 34, 40, 46, 52, 58, 
and fifth timing: 10, 16, 22, 28, 34, 40, 46, 52, 58, 64, 70, 
76) on the uncertainty band of the tumor and immune cells, 
TIS was simulated with two and four uncertain parameters. 
in accordance with Figure 6 (two uncertain parameters) and 
Figure 7 (four uncertain parameters), by boosting the times 

of 5-FU injection shift the uncertainty band of tumor cells 
and MDSCs to left and shift the uncertainty band of NK 
cells and MDSCs to right.

In the upcoming survey, the effect of increasing the number 
of fuzzy uncertain parameters (from two parameters to 
four) has been explored. It has been expected that the 
number of fuzzy parameters has direct impact on the 
cell uncertainty band. The result has been illustrated in 
Figures 8c (membership function of CTLs with regarding 
5-FU injection on days 10, 16, 22), 6d (membership 
function of MDSCs with regarding 5-FU injection on days 
10, 16, 22), Figure 9c (membership function of CTLs with 
regarding 5-FU injection on days 10, 16, 22, 28, 34, 40, 
46, 52, 58, 64, 70, 76) and Figure 9d (membership function 
of MDSCs with regarding 5-FU injection on days 10, 16, 
22). With the increase of fuzzy uncertain numbers from 
two to four, the uncertainty band of cancer cells and NK 
cells do not change (due to insensitivity of cancer cells and 
NK cells to parameters ), while the uncertainty band of 
CTLs and MDSCs expand.

Global sensitivity analysis

Global sensitivity analysis (GSA) identifies a few most 
influential kinetic parameters from a model with a large 
number of parameters, which is critical for optimization and 
structural design. In this section, GSA has been performed 
to investigate the impact of variation in the models’ kinetic 

Figure 5: A three‑dimensional simulation plot of cancer cells (a), natural killer cells (b), myeloid‑derived suppressor cells (c), and cytotoxic T cells (d) for 
two different timing of 5‑FU treatment (same as those given in Figure 2) in the fuzzy setting of kinetic parameters. The four fuzzy uncertain numbers are 
given as follow: ( ) ( ) ( )f m-1 -2 -2= 0 .9 , 1 , 1 .1  × 1 .45 × 10 ,  = 0 .9 , 1 , 1 .1 × 4 .12 ×10 ,  = 0 .9 ,  1 ,  1 .1  × 2 × 10α  and ( ) 6= 09 ,  1 ,  1 .1  × 7 × 10α
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parameters on the dynamics of tumor cells, NK cells, 
CTLs, and MDSCs. To this end, the partial rank correlation 
coefficient (PRCC) method has been used to compute 
the correlation between outcome measures (population of 
cells) concerning all kinetic parameters of the model that 
have been listed in Table 1. Following sensitivity analysis 

developed in,[17] uniform distribution has been dedicated 
for all parameters of the model [in the range of one-half to 
twice its value in Table 1] and generate 1000 samples from 
these distributions using Latin hypercube sampling (LHS). 
Then the model has been evaluated by these samples, 
subsequently the PRCC values and the corresponding 

Figure 6: The membership function of the average of dynamics of cancer cells (a), Natural killer cells (b), Cytotoxic T cells (c), and myeloid‑derived 
suppressor cells  (d)  in  the  time  interval  from day 10  to day 100  (after first 5‑fluorouracil  [5‑FU]  injection)  for different  timing of 5‑FU  injection  (first 
timing: 10, 16, 22, and second timing: 10, 16, 22, 28, 34, and third timing: 10, 16, 22, 28, 34, 40, 46, and fourth timing: 10, 16, 22, 28, 34, 40, 46, 52, 5 8, and 
fifth timing: 10, 16, 22, 28, 34, 40, 46, 52, 58, 64, 70, 76) in the fuzzy setting of kinetic parameters. The two fuzzy uncertain numbers are given as follow: 

( ) -1 = 0 .9 ,  1 ,  1 .1  × 1 .45 × 10  α  and ( ) -2= 0 .9 ,  1 ,  1 .1  × 4 .12 × 10f

dc

ba

Figure 7: The membership function of average of dynamics of cancer cells (a), Natural killer cells (b), cytotoxic T cells (c) and myeloid‑derived 
suppressor cells  (d)  in  the  time  interval  from day 10  to day 100  (after first 5‑fluorouracil  [5‑FU]  injection)  for different  timing of 5‑FU  injection  (first 
timing: 10, 16, 22, and second timing: 10, 16, 22, 28, 34, and third timing: 10, 16, 22, 28, 34, 40, 46, and fourth timing: 10, 16, 22, 28, 34, 40, 46, 52, 58, 
and fifth timing: 10, 16, 22, 28, 34, 40, 46, 52, 58, 64, 70, 76) in fuzzy setting of kinetic parameters. The four fuzzy uncertain numbers are given as follow: 
α -1 -2 -2= (0 .9 ,1 ,1 .1 ) 1 .45 10 , = (0 .9 ,1 ,1 .1 ) 4 .12 10 , = (0 .9 ,1  ×  ×  ×  × × ,1 .1 ) 2 × 10f m  and 6= (09 ,1 ,1 .1 )  × ×7  10α
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P values (significance level) concerning the dynamic of all 
cells at days 50, 100, and 200 of the model simulation and 
cells’ average dynamics from day 0 to day 200 have been 
calculated.

The heatmaps related to the GSA include the mean and 
standard deviation of the PRCC values (five replication) 
and the corresponding P values (maximum of P values for 
five replication). The first panel of Figures 10-13 illustrate 
the 5 replicated average of PRCC values for cells (cancer 
cells, NK cells, CTLs, and MDSCs) populations’ record 
on days 50, 100, 200 after tumor inoculation and for 
averaged dynamics of cells in the time interval from day 
0 to day 200, respectively. The second and third panel of 
Figures 10-13 depicted the standard deviation of PRCC values 
for 5 replication and corresponding P values (maximum of 
P values for 5 replication) for record of cell populations on 
days 50, 100, 200 after tumor inoculation and for averaged 
dynamics of cells in the time interval from day 0 to day 
200, respectively. Each pixel shows the correlation between 
the population of cells (on the vertical axis) and kinetic 

parameters (on the horizontal axis). Correlation values 
range from −1 to +1 and measure linear trend between 
two variables (population of cell and kinetic parameter). In 
Figures 10-13, only meaningful correlation values (P < 0.05) 
have been presented.

As illustrated in Figure 10a, there is a strong correlation 
between the population of cancer cells at day 50 and 
parameters a (growth rate of cancer cells) and Cmax 
(carrying capacity of tumor). Also, the population of 
MDSCs at day 50 and parameters a,Cmax have the same 
correlation. As it has been shown, there is a negative 
correlation between the population of NK cells (and also 
CTLs) and parameters a,Cmax and l (depth of access 
of immune cells to tumor cells). Also, there is a positive 
correlation between the population of NK cells at day 
50 and parameter σ  (constant influx rate of NK cells 
following an encounter with tumor cells). a negative 
correlation between the population of NK cells at day 
50 and parameter p (inactivation rate of NK cells) and 
also between the population of CTLs at the same time and 

Figure 8: The membership function of the average of dynamics of TIS’ cells in the time interval from day 10 to day 100 (after first 5‑FU injection) in the 
control group (no treatment) and 5‑FU treatment group (on day 10:6:22 after tumor inoculation) and in two different fuzzy settings (two or four fuzzy 
uncertain kinetic parameters). (a) The membership function of averaged dynamics of cancer cells in control compared with 5‑fluorouracil (5‑FU) treatment 
group and with regarding two fuzzy parameters (same as those given in Figure 4) or four fuzzy parameters (same as those given in Figure 5). (a‑d) 
Depict the membership function of averaged dynamics of cancer cells, natural killer (NK) cells, cytotoxic T cells (CTLs), and myeloid‑derived suppressor 
cell (MDSCs), respectively. The blue solid line depicts the membership function of fuzzy uncertain outcome measures (cancer cells, NK cells, CTLs, and 
MDSCs) in the control group (no treatment) with regarding two fuzzy uncertain kinetic parameters (same as Figure 4), the brown dashed lines shows for 
5‑FU treatment (three times) and two fuzzy parameters, the red dotted line shows for the control group and four fuzzy uncertain parameters, and green 
dash‑dotted line depicts for 5‑FU treatment (three times) and four uncertain parameters
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parameter m (death rate of CTLs) can be observed. Results 
of PRCC analysis show that there is an inverse correlation 
between the population of cancer cells (and also MDSCs) 
at day 50 and parameter j (maximum recruitment rate 
of CTLs), while there is a positive correlation between 
the population of CTLs (and also NK cells) with this 
parameter. The population of MDSCs at day 50 has a 
positive correlation with parameters a (MDSC’s expansion 
rate),  (MDSC’s production rate) and also has an inverse 
correlation with β (MDSC’s apoptosis rate), q (Steepness 
coefficient of the MDSCs production curve). The results 
of PRCC analysis revealed that the population of CTLs 
at day 50 has an inverse correlation with parameter v 
(differentiation rate of CTLs into other types of T cells 
such as Treg).

In this part, the elementary effects test have been applied to 
identify which of the kinetic parameters have nonlinear or 
linear effects.[16] Morris GSA is used to screen and identify 
which of the 22 kinetic parameters of the model are 

most influential and have a significant effect on outcome 
measures (cell dynamics). For 22 kinetic parameters, 
elementary effects tests using the Morris sampling strategy 
were taken into account by setting 6 levels in the sampling 
grid and 1000 trajectories to compute the mean µ* and 
standard deviation σ . The identified most influential 
kinetic parameters concerning the mean µ* and interaction 
effect σ  have been depicted in Figure 14. The parameters 
with large σ  values indicate nonlinear and interaction 
effects, while the parameters with large µ*values represent 
the linear or additive effects. The dashed line * 2= 

sqrt(r)
σ

µ  

(r is the number of trajectories) which all parameters are 
below than that, translates into a 95% confidence interval.

Morris analysis has been performed by considering the mean 
population of tumor cells, NK cells, CTLs, and MDSCs (in 
no treatment case) from day 0 to day 100 of simulation as 
a read-out. The results of the sensitivity analysis with 10% 
perturbations are showed in Figure 14. Findings revealed 

Figure 9: The membership function of the average of dynamics of TIS’ cells in the time interval from day 10 to day 100 (after first 5‑fluorouracil [5‑FU] 
injection) in the control group (no treatment) and 5‑FU treatment group (on day 10, 16, 22, 28, 34, 40, 46, 52, 58, 64, 70, 76 after tumor inoculation) and in 
two different fuzzy settings (two or four fuzzy uncertain kinetic parameters). (a) The membership function of averaged dynamics of cancer cells in control 
compared with 5‑FU treatment group and with regarding two fuzzy parameters (same as those given in Figure 4) or four fuzzy parameters (same as those 
given in Figure 5). (a‑d) Depict the membership function of averaged dynamics of cancer cells, natural killer (NK) cells, cytotoxic T cells (CTLs), and 
myeloid‑derived suppressor cell (MDSCs), respectively. The blue solid line depicts the membership function of fuzzy uncertain outcome measures (cancer 
cells, NK cells, CTLs, and myeloid‑derived suppressor cells) in the control group (no treatment) with regarding two fuzzy uncertain kinetic parameters (same 
as Figure 4), the brown dashed lines shows for 5‑FU treatment (10 times) and two fuzzy parameters, the red dotted line shows for the control group and 
four fuzzy uncertain parameters, and green dash‑dotted line depicts for 5‑FU treatment (10 times) and four uncertain parameters
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Figure 10: Statistically significant partial rank correlation coefficient (PRCC) values (P < 0.05) for tumor cells, natural killer cells, cytotoxic T‑cells, and 
myeloid‑derived suppressor cells at day 50 after tumor injection. The first (a) and second (b) panels show the mean and standard deviation of PRCC 
values forfive replications of PRCC analysis and the third (c) panel depicts the maximum of their corresponding P values. Black pixels (NaN) show “not 
a number” and represent no significant correlation between outcome measures (population of cells, elements in the vertical axis) and kinetic parameters 
of the model (elements in the horizontal axis)

c

b

a

Figure 11: Statistically significant partial rank correlation coefficient (PRCC) values (P < 0.05) for tumor cells, natural killer cells, cytotoxic T‑cells, and 
myeloid‑derived suppressor cells at day 100 after tumor injection. The first (a) and second (b) panels show the mean and standard deviation of PRCC 
values forfive replications of PRCC analysis and the third (c) panel depicts the maximum of PRCC corresponding P values. Black pixels (NaN) show “not a 
number” and represents no significant correlation between outcome measures (population of cells, its element in the vertical axis) and kinetic parameters 
of the model (element in the horizontal axis)
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Figure 12: Statistically significant partial rank correlation coefficient (PRCC) values (P < 0.05) for tumor cells, natural killer cells, cytotoxic T‑cells, and 
myeloid‑derived suppressor cells at day 200 after tumor injection. The first (a) and second (b) panels show the mean and standard deviation of PRCC 
values forfive replications of PRCC analysis and the third (c) panel depicts the maximum of PRCC corresponding P values. Black pixels (NaN) show “not 
a number” and represents no significant correlation between outcome measures (population of cells, elements in the vertical axis) and kinetic parameters 
of the model (element in the horizontal axis)

c

b

a

Figure 13: Statistically significant partial rank correlation coefficient (PRCC) values (P < 0.05) for an average of dynamics of tumor cells, natural killer 
cells, cytotoxic T‑cells, and myeloid‑derived suppressor cells in the time interval from day 0 to day 200 after tumor injection. The first (a) and second (b) 
panels show the mean and standard deviation of PRCC values forfive replications of PRCC analysis and the third (c) panel depicts the maximum of PRCC 
corresponding P values. Black pixels (NaN) show “not a number” and represents no significant correlation between outcome measures (population of 
cells, elements in the vertical axis) and kinetic parameters of the model (element in the horizontal axis)
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that the parameters a, Cmax, and, b reflecting the tumor 
growth rate, carrying capacity or maximal population of 
tumor cells, and NK cell-mediated tumor cell killing rate, 
respectively, have been identified as being important for 
the tumor cell output [Figure 14a]. The parameter has the 
most interaction effect, while parameter is the most linear 
affecting factor on the dynamics of tumor cells.

The parameters a, Cmax, b and ƞ (CTL-mediated tumor 
killing rate), have been predicted to play a crucial role in the 
regulation of the NK cells population and all of them have the 
most interaction and linear effects [Figure 14b]. The parameter 
a is the most leading parameter on mean population of CTLs 
and has the most interaction and linear effects [Figure 14c]. 
The parameters a, Cmax, b ƞ and l, (depth of access of 
immune cells to tumor cells) have been identified as the most 
influential kinetic parameters for the mean of MDSCs from 
day 0 to day 100 of simulation and all of these parameters 
have interaction and linear effect for MDSCs [Figure 14d].

Discussion
One of the major challenges in the mathematical oncology 
domain is the lack of precise experimental data (in vitro/
in vivo) for model parameterization and estimating crisp 
values for parameters. The high sensitivity of differential 
equation models to the kinetic parameters caused the model 
calibration to be a challenging task. This issue ends up with 
the models based on differential equations that have been 
widely used in mathematical oncology to overcome major 

limitations when they are used to model biological systems 
with insufficient and inaccurate experimental data. The 
fuzzification of kinetic parameters of differential equation 
models and assigning a fuzzy uncertain number instead of 
crisp values for parameters left behind such limitations. 
In the present study, fuzzy theorem has been applied to 
illustrate the fuzzification procedure of parameters for an 
ODE model of TIS interactions.

Uncertainty is an inherent feature of biological systems 
that should be considered in computational models. There 
are two types of uncertainty, randomness, and fuzziness. 
Random uncertainty is simulated using stochastic models 
such as stochastic Petri net,[28,51] stochastic differential 
equations (SDEs),[52,53] agent-based models with stochastic 
rules,[8,11,12,54,55] probabilistic Boolean networks,[56,57] Markov 
model,[58,59] etc. The SDEs with random parameters 
belonging to specific probability density functions (PDFs) 
create stochastic perturbation terms,[60,61] By sampling the 
PDFs of the parameters, and simulating the model with 
random parameters, the dynamic uncertainty band of the 
model components (agents) will be obtained. In this study, 
the effect of the randomness of kinetic parameters through 
GSA has been investigated. In GSA, an elementary 
effect (EE)[16] and PRCC test[17] was implemented. The 
Morris and LHS strategies, respectively, was carried out 
to create a sample size from uniform distributions allotted 
to model parameters. The ODE model was executed 
by these samples and relation between parameters and 

Figure 14: The absolute mean value and standard deviation of Morris GSA (elementary effects analysis). Figures present the relative importance of kinetic 
parameters of the TIS model, considering the mean population of tumor cells (a), mean population of natural killer cells (b), mean population of cytotoxic 
T cells (c), and mean population of myeloid‑derived suppressor cells (d) from day 0 to day 100 as a read‑out. Each kinetic parameter is specified by two 
Morris indices, σ  (vertical axis) and * µ* (horizontal axis), which describe the interaction or nonlinear effects and the significance of the effects, respectively
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cell dynamics was identified. In the present study, to 
quantify the effect of fuzziness of kinetic parameters, 
a FODE model has been designed. The ODE model 
with fuzzy kinetic parameters creates a framework to 
include the quantities with imprecise values. In FODE, 
the membership function of kinetic parameters has been 
decomposed into its a-cuts and discretize each a-cut to 
different levels and execute the ODE model with that level 
to compose a -cuts of cell dynamics (to form membership 
function of cells’ dynamics). This fuzzification method of 
kinetic parameters is similar to stochastic Petri net[28,62] and 
continuous Petri net.[29]

The ODE model of TIS of this article has been taken 
from[30] which is parameterized by imprecise in vivo 
data sets. Final aim is the reconstruction of ODE model 
with the fuzzy theorem to capture the fuzzy uncertainty 
of kinetic parameters. Due to error in data gathering, 
inaccurate, incomplete or missing data, natural variability 
between patients and variable environmental factors, etc., 
the kinetic parameters of the TIS model are uncertain, and 
assigning fuzzy uncertain numbers instead of crisp values, 
can help to capture uncertainty band of the tumor and 
immune cells (compose the membership function of cells 
as a result of the uncertainty of kinetic parameters). This 
study presents the procedure of fuzzification of the kinetic 
parameters of an ODE model and illustrates this procedure 
for an ODE model of the TIS model. Even though the 
described fuzzification method in this study has been used 
for a TIS model, but it is not confined to this system and 
this method as a powerful tool can be applied to any ODE 
model of any system/network.

Conclusion
In this study, capturing the uncertainty of the kinetic 
parameters of an ODE model of TIS was the ultimate goal. 
The ODE model mechanistically simulates the interactions 
of tumor cells, CTLs, NKs, and MDSCs. CTLs and NK 
cells are the most prominent components of the adaptive 
and innate immune system play a vital role in encountering 
with tumor cells, while MDSCs as immature immune cells 
suppress the immune responses in the inflammatory tumor 
microenvironment. To consider the parametric uncertainty 
of the ODE model, the fuzzy theorem has been applied 
and fuzzy numbers with triangular membership functions 
instead of deterministic values have been used. Fuzzy 
parameters are applied as the input source of uncertainty 
to the TIS and cause uncertainty in tumor and immune cell 
dynamics. Hence, the uncertainty source of TIS agents’ 
dynamics is the uncertainty of the ODE model’s kinetic 
parameters. The of uncertainty of kinetic parameters 
originated from the errors in experimental data acquisition, 
missing or incomplete data values. Furthermore, some 
specific features of TIS cause the kinetic/dynamic rate of 
different actions, behaviors, and interaction of system to be 
uncertain, including, variability and dynamics of TIS from 

patient to patient and during time and treatment, dynamical 
features of TIS including dynamic cell size, cell density, 
various and unpredictable patterns of extracellular ligands 
and receptors, evolutionary mutation types during time 
and treatment, diversity in phenotypic patterns, chaotic 
and complex patterns of vasculature status and so on. 
All of the mentioned features make the TIS a complex 
system which requires very sophisticated mathematical 
functions along with many kinetic parameters that must 
be estimated by in vitro/in vivo data. For the sake of 
brevity and simplicity of the mathematical model, ODE 
model with fuzzy uncertain kinetic parameters has been 
proposed to construct a FODE model. FODE model can 
be used for the dynamical analysis of the TIS interactions 
and in silico assessment of 5-FU chemotherapy which 
leads to suppression of MDSCs and tumor cells. The 
FODE model of the present study through mechanistically 
modeling the different immune-tumor cell interactions 
predicts the uncertainty band of the cell populations. 
The model simulates the effect of 5-FU treatment for the 
improvement of the immune system performance in the 
inflammatory tumor microenvironment. The FODE is 
configurable for 5-FU chemotherapy injection timing and 
was used to investigate the efficacy of 5-FU chemotherapy 
in the fuzzy setting. Simulation results revealed that 5-FU 
therapy caused the uncertainty band of the population of 
cancer cells and MDSCs to shift to the smaller populations 
while the uncertainty band of the population of NK cells 
and CTLs shifted to the larger populations. Our data 
reveals that increasing/decreasing the uncertainty band 
of the model’s fuzzy parameters increases/decreases the 
uncertainty region of the dynamics of species. It can be 
concluded that 5-FU therapy limits tumor growth and 
induces anti-tumor immunity. Since fuzzy analysis takes 
advantage of parametric uncertainty of TIS, in silico 
assessment of 5-FU therapy, robust suggestions for the 
protocol of 5-FU treatment can be generated. The results 
of chemotherapy by 5-FU injection can provide a practical 
tool for the medical community to conduct experiments for 
validation in the laboratory environment. In silico design of 
5-FU treatment conducted by the novel FODE model help 
us to test different schedules of this treatment by virtual 
experiments and significantly reduce the cost and time of 
real experiments. The results of the model simulations with 
5-FU injection are qualitatively consistent with the results 
of in vivo studies[42,48,49] Besides, for better understanding 
the mechanisms of TIS interactions, the model can also 
provide testable hypotheses in vitro/in vivo experiments. 
So that the model can be extended via in vitro/in vivo 
data and parameterized (learned) model may be evaluated 
in silico environment and model has the ability to be 
refined through in vivo/in silico (or in vitro/in silico) 
iterative process. Taking into consideration the dynamical 
information obtained from in silico experiments, a more 
detailed study of the system can be conducted in vitro/
in vivo experiments.
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