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Abstract
Background: Accurate semantic segmentation of kidney tumors in computed tomography  (CT) 
images is difficult because tumors feature varied forms and occasionally, look alike. The KiTs19 
challenge sets the groundwork for future advances in kidney tumor segmentation. Methods: We 
present weight pruning  (WP)‑UNet, a deep network model that is lightweight with a small scale; 
it involves few parameters with a quick assumption time and a low floating‑point computational 
complexity. Results: We trained and evaluated the model with CT images from 210  patients. The 
findings implied the dominance of our method on the training Dice score (0.98) for the kidney tumor 
region. The proposed model only uses 1,297,441 parameters and 7.2e floating‑point operations, three 
times lower than those for other network models. Conclusions: The results confirm that the proposed 
architecture is smaller than that of UNet, involves less computational complexity, and yields good 
accuracy, indicating its potential applicability in kidney tumor imaging.
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Introduction
The American Cancer Society[1] has 
reported on the prevalence of kidney cancer 
in both men and women. Overall, the 
life‑time risk to develop kidney cancer is 
approximately 1/48 and 1/83 for men and 
women, respectively. The types of kidney 
cancer in this study were of an advanced 
stage. Kidney cancers are generally this 
advanced stage because the kidneys are 
situated deep inside the body and are 
not physically perceived on a physical 
inspection. Several imaging methods are 
currently in use to track the growth of 
kidney tumors. This imaging method has 
become increasingly popular because it 
can selectively extract diseased tissues 
and retain additional stable tissue. This 
approach was successful in treating small 
kidney masses. After the precise evaluation 
of the kidney tumor, details such as the 
kidney, tumor structure, and others can 
be collected. In a recent study,[2] it was 
difficult to derive the essential details from 
computed tomography  (CT) or magnetic 

resonance imaging scans. Kidney tumors 
vary in color, form, and scale and have a 
similar appearance to their parenchyma 
and other nearby tissues. Given the 
segmentation of the kidney[3] tumor area, 
segmenting kidney tumors are extremely 
difficult.

At present, there is an increased need to 
deploy deep learning solutions on mobile 
handheld devices,[4] embedded systems, 
or machines with minimal resources. An 
important reason why convolutional neural 
networks (CNNs) are challenging to train is 
because they are overparameterized,[5] and 
they typically require greater computational 
power and storage space for training and 
inference. Deep learning researchers have 
claimed many “pruning” strategies or 
quantizing learned parameters on broad 
image datasets.[6‑8] Others have concentrated 
on teaching compact models[9‑11] from 
scratch by factorizing regular convolution 
layers into depth‑wise separable convolution 
layers for cheaper computations.

Although CNNs have achieved the best 
results in functional implementations, 
robustness and accuracy  (AC) remain 
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challenging. Ronneberger and Fischer[12] proposed 
a tool called UNet for automated medical image 
segmentation to solve these issues. The UNet 
synthesizes vital information by reducing the cost 
function in the first half of the network and generates 
an image in the second half. Inspired by the UNet 
model, we approached the current challenge of 
kidney tumor segmentation by proposing a weight 
pruning  (WP)‑UNet model. We implemented WP of 
the UNet with a depth‑wise separable convolution 
architecture, and thus, it refines even tiny regions in the 
output tumor picture. The system precisely separates 
the tumor regions of the kidney and offers established 
quantification and qualitative validity.

Related works

Several computer‑aided diagnosis models and artificial 
neural networks have been developed to classify and 
segment renal tumors using CT scans. Linguraru et  al.[13] 
published a computer‑aided method which was used to 
examine a collection of brain CT scans of 43  patients. 
In this system, tumors were robustly segmented with 
approximately 80% overlap. The methodology studied 
morphological variations between various types of lesions. 
Lee et  al.[14] developed a computer program capable of 
detecting and identifying small renal masses in CT images. 
Their tests yielded a specific signal‑to‑noise ratio of 
99.63%.

Shah et  al.[15] presented a segmentation approach using 
machine learning. Yang et  al.[16] created a system to 
automatically segment CT images of the kidney based on 
multi‑atlas registration. First, they recorded a low‑resolution 
image with a series of higher resolution images to create 
a patient‑registered image. Next, the kidney tissues were 
segmented and aligned to achieve the final segmented 
production.

Various researchers have also experimented with the 
segmentation of renal tumors using deep learning. Thong 
et  al.[17] used an online patch‑wise convolutional kernel to 
classify the central voxel in two‑dimensional  (2D) patches. 
Then, the ConvNet analyzed the CT scan data of each 
kidney tumor slice.

A Skalski et  al.[18] demonstrated an efficient hybrid level 
set approach with elliptical form restrictions for kidney 
segmentation. The RUSBoost algorithm and decision 
trees were used to differentiate between kidney and 
tumor structures, serving as a solution to class imbalance 
and the need for defining additional voxels. Their model 
achieved an average precision of 92.1%. Wang et  al.[19] 
defined a CNN‑based model for kidney segmentation. 
They proposed a CNN‑based segmentation scheme that 
integrates the bounding box information. They also 
improved the CNN model by fine‑tuning the model for 
each picture.

Network prototypes

Deep neural networks are superior in their capacity and 
ability to be generalized. Deep models that learn entirely 
from data produce excellent results for many tasks when 
compared with humans. They enhance the plot depth. 
Researchers have achieved further advances in neural 
networks. The use of skip links in deep neural networks 
makes them more trainable to perform tasks such as deep 
learning. UNet was initially planned to resolve image 
segmentation, but others such as VGGNet and ResNet 
were designed for deep classification[13] supervision to 
further enhance segmentation. Network pruning has been 
widely studied to compress the CNN models. In early 
work, network pruning proved to be a valid way to reduce 
network complexity and overfitting by Hassibi and Stork.[20] 
Recently, B Hassibi and Stork[20] pruned state‑of‑the‑art 
CNN models with no AC loss.

Proposed Methods 
In this section, we propose the WP‑UNet model and 
describe the modified objective function.

Image preprocessing

All CT images were resized to 256  ×  256 pixels in the 
training set and separated by 255 pixels to normalize the 
pixel values from 0 to 1.

Dataset

The KiTS19 challenge dataset for kidney tumor disease 
segmentation was used to assess the performance 
of WP‑UNet. The KiTS dataset[21] consists of 210 
high‑contrast CT scans collected in the preoperative arterial 
process. They were chosen from a cohort of subjects 
who underwent partial or radical nephrectomy[22] for one 
or more kidney tumors at the University of Minnesota 
Medical Center and were eligible for inclusion between 
2010 and 2018. The volumes included are characterized by 
different plane resolutions ranging from 0.437 to 1.04 mm, 
with slice thicknesses ranging from 0.5  mm to 5.0  mm in 
each case.

The dataset also provides the ground‑truth mask of healthy 
kidney tissue and healthy tumors  [Figure  1] for each case. 
Under the guidance of experienced radiologists, a group 
of medical students manually generated sample labels 
with only CT scan image axial projections. A  detailed 
description of the segmentation strategy for the ground truth 
is described in Heller et  al.[21] The KiTs challenge dataset 
is provided with shape  (number of slices, height, width) 
in the standard Neuro Imaging Informatics Technology 
Initiative format.

Weight pruning‑UNet model (proposed architecture)

Figure  2 shows the detailed architecture of the proposed 
WP‑UNet model. The network has the properties of the 
encoder and decoder structure of the vanilla UNet.[23] As 

[Downloaded free from http://www.jmssjournal.net on Saturday, May 14, 2022, IP: 176.102.245.56]



Rao, et al.: WP-UNet

110� Journal of Medical Signals & Sensors | Volume 12 | Issue 2 | April-June 2022

suggested by Liu et  al.,[24] first, the input image is passed 
into the standard convolution layer; subsequently, it is 
passed to the encoder part of the WP‑UNet block. WP‑UNet 
block organized with sequence of layers such as two 
depth‑wise separable convolutional layer, two activation 
layers, and one batch normalization layer as shown in 
Figure  3. Here, depth‑wise separable convolutional layers 
are used which is much more commonly used in deep 
learning  (e.g.,  MobileNet and Xception) for embedded 
devices.[9]

The proposed model with an input image of size H  ×  W × 
D, if we do depth‑wise separable convolution  (stride  =  1, 
padding  =  0) with Nc kernels of size e  ×  e × d, where e is 
even, then the multiplications in transformation for depth‑wise 
separable convolution are (e  ×  e + Nc) × D × (H  −  e +1) 
× (W − e + 1) which is less with 2D convolution transformation 
Nc × e × e × D × (H and e + 1) × (W − e + 1). After training 
the proposed model, weight‑based pruning is applied without 
compromising the performance of the network. The WP‑UNet 
model uses a weight decay rate of 4e  −  5, which has been 
carefully tuned for the performance on our dataset. In WP‑UNet, 
experiment model includes a dropout layer of rate 0.5 before 
the up sampling layer. In WP, individual weights in the weight 
matrix are set to zero. And here to achieve sparsity of S%, we 
rank the individual weight in weight matrix W according to 
their magnitude and then set to zero the smallest S%.

Loss function

In this study, the Adam optimizer[25] is applied, which correctly 
updates the network weights by iteration in the training data. 
Adam makes an average in the first and second moments of 
gradients to adapt the learning rate parameter. Sabarinathan 
et al.[26] proposed that the loss function should be the sums of 
the categorical cross‑entropy dice loss channel one  (C0) and 
dice loss channel two (C1), as defined in Eq. (1).

Loss = 𝐿 + (𝐶0) + 𝐷𝑖𝑐𝑒𝐿𝑜𝑠 (𝐶1)	 (1)
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where L is the cross‑entropy loss. In Eq.  (2), yi and pi 
are the ground truth and predicted segmented images, 

Figure 1: An example of computed tomography scan images from the KiTs19 Challenge dataset.

Figure 2: An overview of the detailed architecture of weight pruning-UNet
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respectively. Moreover, to ensure the loss function stability, 
the coefficient ϵ is used.

Performance metrics

The key performance metrics used to measure the WP‑UNet 
performance on the CT scan dataset are explained in this 
subsection.

Accuracy

AC measures the percentage of correct predictions and is 
given as,

AC = (TP + TN)/(TP + TN + FP + FN)� (4)

where TP  =  correctly predicted positive, TN  =  correctly 
predicted negative, FP  =  incorrectly predicted positive, 
FN = incorrectly predicted negative.

Mean intersection over union

The mean intersection over union  (IOU)[20] is a popular 
evaluation method for semantically segmented images that 

Figure 3: Components of the weight pruning-UNet block

first determines the IOU for each semantic class and then 
determines the average over classes. The mean IOU is 
expressed as follows:

Mean IOU = TP/(TP + FP + FN)� (5)

Floating‑point operations

Floating‑point operations  (FLOPs) essentially calculate the 
number of multiplications and additions of floating‑point 
numbers to be performed by the computation device’s 
processor. A  neural network in progress requires FLOP 
calculations to estimate the complexity of the proposed 
model.

Results
Training

The proposed network was trained with two outputs, 
namely the kidney and kidney tumor regions. The weight 
updates were performed using the Adam optimizer with a 
learning rate of 0.001. The batch size was set to 16, and 
the total number of epochs was set to a hundred. The 
training was based on Keras with a Tensorflow backend as 
a Google Colab deep learning framework enabled with an 
NVIDIA GPU  such as T4  (12 GB memory) with a high 
memory virtual machine.

The standard dice score is considered an evaluation 
metric for the performance of the proposed WP‑UNet 
model. We employed 35,865 and 10,158 images as 
training and validation images, respectively, in our 
experiments. Table  1 shows the segmentation results 
of the proposed WP‑UNet model for the training and 
validation images.

From the table, we observe that during training, the 
proposed method achieves a training AC of 0.98 for 
the tumor region. Similarly, the computational resource 
usage of our network is listed in Table  2. Based on the 
experimental results, we perceive the power of network 
pruning in the proposed network. Because network pruning 
is added to the proposed architecture, the total number of 
flops and parameters is three times smaller than the typical 
UNet architecture.

As shown in Figure  4, the result of WP‑UNet is shown 
faster convergence with better performance when we 

Figure  4: Weight pruning-UNet shows faster converges and better 
performance during training

Table 2: Computational comparison between weight 
pruning‑UNet and other models

Model Parameters Flops
UNet 5,680,353 62.4e
UNet (depth‑wise + BN) 2,601,921 7.8e
WP‑UNet (network pruning + 
depth‑wise + BN)

1,297,441 7.2e

BN – Batch normalization; WP – Weight pruning

Table 1: Comparison of results between weight 
pruning‑UNet and other models

Model Training 
loss

Training 
accuracy

Mean 
IOU

UNet 0.5601 97.87 0.435
UNet (depth‑wise + BN) 0.4439 93.62 0.362
WP‑UNet (network pruning 
+ depth‑wise + BN)

0.066 98.43 0.428

BN – Batch normalization; WP – Weight pruning; 
IOU – Intersection over union
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compare with the standard UNet with less number of 
epochs on large kidney tumor segmentation. In Figure 5, the 
qualitative effects of the KiTs‑19 dataset on the proposed 
WP‑UNet model are shown. We used the provided input 
images and ground‑truth reality images to perform the 
experiments.

The segmented performance image is depicted in Figure 6. 
The red colored area is the kidney region in the output 
picture, and the green‑colored part is the kidney tumor. 
Numerous structures outside the tumor and kidney 
areas were neglected for simplicity. The final segmented 
output closely matches the ground truth image from the 
quantitative results, which demonstrates the usefulness of 
the proposed WP‑UNet.

Conclusions
Medical image segmentation is an important preliminary 
step in the identification of kidney organ structure 
and tumor tissues in CT image scans to aid in illness 
diagnosis, treatment, and general analysis. Early diagnosis 
is necessary to help in preventing complications that may 

arise due to late detections. However, with the increasing 
availability of large biomedical data, the workload on 
nephrologists, radiologists, and other experts in the field 
has also increased. To help provide easier, accurate, and 
timely detections, several deep learning methods have been 
proposed, most of which have proven to be successful. The 
UNet architecture is one such model that is widely accepted 
among researchers for biomedical image segmentation 
tasks.

In this study, WP‑UNet was proposed for the segmentation 
of kidney tumor data with limited computational resources.

The WP-UNet architecture makes use of depth-wise 
separable convolutions [ Figure 2] and network pruning 
shown in Figure 7 to reduce the parameters and FLOPs.

Moreover, the WP‑UNet deep learning method exhibits a 
faster inference speed than that of the UNet method. Our 
findings indicated that the proposed WP‑UNet architecture 
yielded a satisfactory AC. Our system obtained a dice score 
of 0.9799 and 0.9599 for the preparation and validation 
sets, respectively. The proposed WP‑UNet model achieved 

Figure 5: Illustrations of original input computed tomography images and their respective kidney and tumor segmented output images

Figure 7: Weight pruning‑UNet network pruningFigure 6: Sample kidney and tumor regions
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the best segmentation outcomes in terms of the dice 
score and usage of computational resources. In addition, 
WP‑UNet is shown to have a faster inference speed on 
test data and is beneficial for situations wherein rapid and 
accurate segmentation results are required.
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