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Introduction 

By increasing uses of medical X‑ray images for diagnosing, 
efficient medical images retrieval becomes a necessity. 
Classification is one of the most important stages of image 
retrieval. Thus a certain classification plays a fundamental 
role in development of image retrieval.

Several medical X‑ray image classification schemes are 
presented in the literature.[1‑5] In 2003, Keysers et  al.[6] 
developed a new content‑based medical image retrieval 
scheme. In this method, images have been classified based 
on image modality, body orientation, anatomic region, and 
biological system. Performance of this classifier has been 
evaluated on 1617  training images and 332  test images 
from six classes of IRMA dataset and an error rate of 8% was 
obtained. In 2007, a new image classification method has 
been proposed by Mueen et al.[7] In this method, multilevel 
features have been extracted from 9000 training images and 
1000 test images. Then Support Vector Machines (SVM) have 
been utilized in the classification stage. It should be noted 
that a support vector machine learns the decision surface 
from two distinct classes of the input points.[8] The accuracy 
rate of this method for 57 classes was 89%. In 2009, Iakovidis 
et  al.[5] presented a content‑based medical image retrieval 
scheme. This method that utilizes similarity measures, 
defined over higher level patterns that were associated with 
clusters of low level image feature spaces. Performance of 

this scheme has been evaluated on 9000  training images 
and 1000 test images from 116 classes of IRMA dataset. The 
accuracy rate of this scheme on a subset of available data, 
generated according to the guidelines provided in[1] was 
78%. In this method, training images were registered in the 
database. So some additional computation for registration of 
training images was necessary and it may not be so attractive. 
Also, a large number of training images was used in this 
method. With respect to this point that labeling of a large 
number of samples is expensive and time consuming, and 
majority of proposed methods for x‑ray image classification 
are based on a large number of training samples, the basic 
motivation for medical x‑ray image classification using a 
small number of training samples still remains as a challenge.

Recently, fuzzy set theory is used in many applications[9] 
and particularly in the field of pattern clustering and 
classification tasks.[10‑12] Resent work in fuzzy‑based 
medical image classification schemes has focused on 
extracting the fuzzy features. For example, Iakovidis et al.[13] 
developed a novel approach for thyroid ultrasound pattern 
representation. In this approach, a feature extraction 
scheme based on fusion of a fuzzy distribution of local 
binary patterns and ultrasound echogenicity represented 
by the fuzzy gray‑level histogram is presented. In Ref. [14] 
a new method of content‑based radiology medical image 
retrieval is presented. The description of images, in their 
work, relies on a fuzzy rule based Compact Composite 
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Descriptor (CCD), which includes global image features 
capturing both brightness and texture characteristics in a 
1D Histogram. These approaches do not take advantages of 
fuzzy set theory in the classification stage. In this paper, in 
order to obtain a good performance, we propose a classifier 
based on fuzzy set theory.

The aim of this paper is to introduce a new efficient scheme 
for medical x‑ray image classification. Unfortunately, a 
typical characteristic of medical x‑ray images is their large 
variations within a class, and also strong visual similarities 
across different classes.[1] Hence, the determination of a 
category is, in general, a difficult task. It is fortunate that in 
this case, fuzzy set theory allows us to easily determine the 
degree of membership of each image to different categories. 
Considering these points, in this paper a fuzzy‑based scheme 
for medical x‑ray image categorization is proposed. The 
results show that a fuzzy classifier performs more efficient 
than well‑known classifiers such as multilayer perceptron 
(MLP) and even support vector machines (SVM). 

The paper is organized as follows. Section II presented the 
procedure of feature extraction. In Section III, we described 
our fuzzy classification scheme. Experimental results are 
shown in section IV. Finally, conclusions are summarized in 
section V.

Feature Extraction

Texture, shape, color, and spatial location features are often 
used in pattern classification. Since x‑ray images are gray 
level and their texture characteristic is very similar, so color 
and texture features may not be suitable for medical x‑ray 
images classification. In this paper, a combination of shape 
and texture features is used. Feature extraction algorithm 
diagram is shown in Figure  1. The features extraction 
procedure is described as follows: 

Histogram Adjustment
In this stage, the contrast of input images is improved by 
mapping the intensity values of each image to new values, 
such that 1% of data are saturated at low and high intensities 
of original image. 

Image Denoising
In images in which the brightness gradient generated 
by the noise is greater than that of the edges, and the 
level of the noise varies significantly across the image, a 
global noise estimate does not provide an accurate local 
estimate  and  the  local value  of the gradient provides too 
partial a piece of information for distinguishing noise‑related 
and edge‑related gradients.[15] Hence, in order to remove 
noise from images, the anisotropic diffusion filter that was 
proposed by Perona et al,[16] is applied. They put forward an 
anisotropic diffusion (AD) equation to smooth a noisy image 
that is given by the expression

∂
∂

= ∇ ∇u x y t
t

g u x y t u x y t
( , , )

( ( ( , , ) ) ( , , )),div � (1)

where u x y t R( , , ) : [ , )Ω× +∞ →0 is a scale image obtained by 
convolving the original image u x y0 ( , ) with a Gaussian kernel 
G x y t( , ; ) of variance t , g u( )∇ is a decreasing function of 
gradient. 

Detecting Edge Using Canny Edge Detection
The Canny method[17] finds edges by looking for local maxima 
of the gradient of each image. The gradient is obtained using 
the derivative of a Gaussian filter. The method uses two 
thresholds to detect strong and weak edges, and includes the 
weak edges in the output only if they are connected to strong 
edges. This method is therefore less likely than the others to 
be fooled by noise, and more likely to detect true weak edges.

Calculating Phase Congruency 
As shown in Figure  2, to remove unnecessary edges and 
boundaries and also to increase the edge features accuracy, 
the phase congruency of shape image and original image 
are computed.[19] The phase congruency of original image 
and the resulting image of previous step is calculated. Then 
these two resulting images are multiplied. The measure of 
phase congruency proposed by Morrone et al.[20] is

PC x
E x
A xn

n

1( )
( )

( )
,=

∑
� (2)

Figure 1: Feature extraction algorithm diagram
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where E x( ) (local energy), is the magnitude of the vector 
from the origin to the end point and A xn ( )  is the amplitude 
of local, complex valued, Fourier components at a location 
x in the signal. 

Partitioning Image into 25 Subimages
In this stage, each image is partitioned into 25 subimages. In 
order to keep the information of boundaries of subimages, 
image partitioning into overlapping subimages is used. Note 
that by using the overlapping subimages scheme, each image 
can be partitioned into ( )2 1 2n +  subimages for n = 1 2 3, , ,...  
and in this paper, partitioning into 25  subimages ( n = 2 ) 
is poposed, because 9 subimages ( n = 1) cannot illustrate 
details clearly and by using the 49 subimages ( n = 3 ), the 
number of extracted features will be increased.

Computing Discrete Gabor Transform
After preprocessing stages, we compute Gabor transform of 
each subimage. Gabor filters are a group of wavelets, with 
each wavelet capturing energy at a specific frequency and a 
specific direction.[18] Frequencies and directions utilized in 
this paper are shown in Figure 3. For a given image I x y( , )
with size P×Q, discrete Gabor transform[18] is obtained 
using the following expressions:

G x y I x s y t s tm n mn
ts

,
*( , ) ( , ) ( , ),= − −∑∑  � (3)

where s and t are the filter mask size variables, and mn
*  is 

the complex conjugate of mn which is a class of self‑similar 
functions generated from expansion and rotation of the 
following mother wavelet:

ϕ
πσ σ σ σ
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where is the modulation frequency. The self‑similar Gabor 
wavelets are obtained through the generating function:

 mn
mx y a x y( , ) ( , ),= −
% % � (5)

where m and n indicate the scale and direction of the wavelet 
respectively, with m M n N= − = −0 1 1 0 1 1, , , , , , , ,K K  and
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In our implementation, the following values are used for 
mentioned parameters as commonly used in the literature: 
U Ul h= =0 05 0 4. , . ,  M=3, N=6, s and t range from 0 to 33, 
i.e., filter mask size is 33×33.

Extracting Shape‑ texture features
Finally, in the last stage of feature extraction, two features 
are extracted from any filtered subimage. These features are 
calculated as follows:[19]

Figure 2: Phase congruency computation results; (a) Computing phase congruency of edge images; (b) Computing phase congruency of original images; 
(c) Multiplication results of edge images[18]
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where I i j( , ) is the result of applying Gabor transform to 
each subimage with size P Q× :

Log-energy entropy = −
=

−

=

−

∑∑ ( ( , )) .A i j
j

Q

i

P
2

0

1

0

1

� (9)

Discrete wavelet transform is applied to I i j( , ) and finally 
A i j( , ) are coefficients of the low‑frequency subband in an 

orthonormal basis.

Proposed Classification Method

A new scheme for the fuzzy classification of medical x‑ray 
images is proposed in the present paper. The proposed 
fuzzy classification scheme extracts information of different 
parts of input pattern relating to each class. Since all parts 
of an image are not equally important in discriminating all 
classes, the partwise membership is expected to help in the 
classification performance. An illustration of the proposed 
classification method is shown in Figure 4.

The proposed scheme works in two steps. In the first step, the 
system takes a feature vector of input pattern and fuzzifies its 
different parts using a membership function, and provides 
the membership of individual parts to different classes. 
A  membership matrix thus obtained contains number of 
rows and columns equal to the number of subimages or parts 
and classes, respectively. In the present study, we have used 
a membership function [Figure 5] to fuzzify an input pattern. 
Thus, the first step of the proposed fuzzy classification scheme 
extracts the hidden information of different subimages to all 
classes that may be helpful for achieving better classification 
results. The advantage of using this type of membership 
function is that it has two fuzzification parameters, which can 
be tuned to produce the best classification results.

The second step of the proposed fuzzy classifier is a hard 
classification by applying a max operation to defuzzify the 

output results. An image is assigned to the class which has 
the highest membership value.

Fuzzification
The membership function generates a partwise degree of 
similarity of an image to different classes by fuzzification. 
Here we have utilized a membership function to model 
a class according to a Euclidean distance. The distance 

Figure 5: Membership function as a function of Di

Figure 4: Proposed classification method

Figure 3: Frequencies and directions of Gabor filters used in this work
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is between feature vector of any subimage and average 
of feature vectors of training subimages for fuzzification 
process. By varying the values of the fuzzification 
parameters ( F F1 2, ), the steepness of the membership 
function can be controlled. This function is defined as 
shown in Figure 5

m k i

D F

F D

F F
F D F

D F

k i

k i
k i

k i
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,

,
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where   is a very small positive value. To calculate Di k, , 
suppose x1 and x2 are feature vectors of subimage i  and 
the average of feature vectors of training subimages in class 
k  with fixed size N , respectively. Then Euclidean distance 
between x1  and x2 or Di k, is defined as follows:

D x x x x x x x xk i
l l T

l

N

, ( , ) ( ) ( ) ( ).1 2 1 2
2

1 2 1 2
1

= − = − −
=
∑ � (11)

Finally, the normalized membership function of any 
subimage can be defined as

m( , )
( , )

. ( , )k i
m k i

m k i

k

=
∑

1
� (12)

In the present study, it should be noted that the fuzzification 
parameters are tuned to achieve the best performance. We 
have selected the fuzzification parameters F1  and F2 as 15 
and 850 respectively, and  = −10 4  is considered.

Defuzzification
The last step of the proposed fuzzy classification model is a hard 
classification by performing a max operation to defuzzify the 

output results. The image is assigned to class k corresponding 
to the highest membership value. Mathematically, the class 
number of a test image is determined as follows:

p
k i

= ∑argmax( m(k,i)).� (13)

Exprimental Results

In this section, the result of implementation of proposed 
method and comparison with some other classification 
methods are presented.

The images utilized for implementation include 2655 
radiographic images with different sizes (example images are 
represented in Figure 6). These images are from 20 classes of 
IRMA database. We have taken 300 and 200 images as training 
samples, e.g., 15 and 10 samples for each class, and 2355 test 
samples. These classes are listed in Table 1. Using a small number 
of training samples is the most important point of this work. 

Here, we present our results at a global accuracy, meaning 
the performance on the complete dataset, but also at a 
class‑specific level, where we average the classification 
rates of all classes evaluated separately. We follow this 
procedure, as we encounter an unbalance database.[2]

After some preprocessing, shape‑texture features are 
extracted using Gabor filters. Gabor filters extract the 
features from midfrequency or higher bands. Hence, the 
features that are extracted from the filtered x‑ray images 
could not be features with rich information content. On the 
other hand, the spectrum of extracted edges for an image is 
more spread than that of original image. Thus, the features 
achieved from filtered extracted edges will be more efficient. 
First, just log‑energy entropy features were extracted and 

Figure 6: (a) Some images with different sizes from the images archives. (b) Some images with bad conditions from the images archives
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applied for classification method. Then, we extracted another 
feature, standard deviation, to improve the performance of 
this work. Tables  2 and 3 depict the classification results 
using log‑energy entropy feature and its combination with 
standard deviation feature for 300 training data, respectively. 
Also, the performance comparison results for 200 and 

100 training samples using combination of features is shown 
in Tables 4 and 5. In each case, in order to reduce the feature 
space dimensionality and computational complexity and 
also to increase their capability, the Principal Component 
Analysis (PCA)[21] algorithm is utilized. Also, to achieve the 
best classification results, the optimum length of the feature 
vector is selected by several iterations. 

To evaluate proposed classification method, three different 
classifiers consist of polynomial and Gaussian kernel 
support vector machines and MLP are utilized to compare 
with proposed classifier. As SVM is basically bi‑classifier, we 
can use it to classify data into multi‑class by different ways 
such as one‑against‑all, one‑against‑one and hierarchical. In 
this work, one‑against‑one method[22] is used. Furthermore, 
in the SVM classifier, two parameters exist for polynomial 
and Gaussian kernels: C and g . For a given problem, It 
is not known beforehand which C and g  are the best, 
so a good selection of these parameters must be done. 
A  common strategy is to separate the data set into two 
parts, of which one is considered unknown. The prediction 
accuracy obtained from the unknown set more precisely 
shows the performance on classifying an independent data 
set. An improved version of this procedure is known as 
cross‑validation. In v‑fold cross‑validation, we first divide 
the training set into v subsets of equal size. Sequentially one 
subset is tested using the classifier trained on the remaining 
v‑1 subsets. Thus, each instance of the whole training 

Table 1: X‑ray i mage classes
Class number Anatomic part Direction

1 Pelvis (cardiovascular system) Coronal
2 Left breast Axial
3 Right breast Axial
4 Knee Axial
5 Elbow Coronal
6 Elbow Sagittal
7 Ankle joint Coronal
8 Knee Coronal
9 Pelvis (musculoskeletal system) Coronal
10 Cervical spine Coronal
11 Lumber spine Coronal
12 Chest Sagittal
13 Neuro cranium Sagittal 
14 Cranium Coronal 
15 Hand Coronal 
16 Chest Coronal 
17 Foot Coronal 
18 Thoracic spine Sagittal 
19 Ankle joint Sagittal 
20 Radio carpal joint Sagittal 

Table 2: Classification accuracy rates obtaied by four 
different classifiers using log‑energy entropy feature for 
300 training images
Class number MLP SVM Fuzzy 

classifierPolynomial 
kernel

Gaussian 
kernel

1 25 100 100 95
2 89.09 94.54 94.54 96.36
3 88 86 86 88
4 48.75 60 60 70
5 65 65 65 68.33
6 48 60 60 49.33
7 30.83 73.33 73.33 79.16
8 68.23 71.76 71.76 62.35
9 55 58.5 59 81
10 51.5 76 76 80
11 74.76 76.2 76.2 87.62
12 58.6 56.4 56.8 65
13 40.77 75 74.61 75
14 98 96 96 70
15 20 80 80 74
16 66 94 94 76
17 54 54 54 56
18 50 80 80 66
19 62 86 86 68
20 28.57 65.71 68.57 77.14
Classwise accuracy rate 56.1 75.42 75.6 78.61
Global accuracy rate 56.22 70.10 70.23 80.38
Figures are in percentage

Table 3: Classification accuracy rates obtained by four different 
classifiers using combination of log‑energy entropy and 
standard deviation featears for 300 training images
Class number MLP SVM Fuzzy 

classifierPolynomial 
kernel

Gaussian 
kernel

1 90 100 100 95
2 72.72 96.36 96.36 100
3 72 96 96 100
4 33.75 61.25 61.25 75
5 10 70 70 70
6 48 50.66 50.66 50.66
7 53.33 78.33 78.33 86.66
8 72.94 82.35 82.35 72.94
9 39.5 77 77 83.5
10 71.5 86 86 92.5
11 69.52 87.14 87.14 91.42
12 62 82.4 82.4 85.8
13 61.53 86.53 86.53 90.76
14 60 96 96 88
15 30 72 72 80
16 74 96 96 76
17 20 74 74 70
18 36 84 86 82
19 28 90 90 82
20 40 77.14 74.28 74.28
Classwise accuracy rate 52.24 82.15 82.11 82.32
Global accuracy rate 57.11 82.08 82.08 84.3
Figures are in percentage



Ghofrani, et al.: Fuzzy‑based medical X‑ray image classification

Journal of Medical Signals & Sensors

Vol 2  | Issue 2  |  Apr-Jun 2012 79

Table 4: Classification accuracy rates obtained by four different 
classifiers using combination of log‑energy entropy and 
standard deviation featears for 200 training images
Class number MLP SVM Fuzzy 

classifierPolynomial 
kernel

Gaussian 
kernel

1 70 95 95 97.5
2 72.2 90.9 90.9 100
3 72 90 90 100
4 25 53.75 53.75 81.25
5 11.66 63.33 63.33 56.66
6 12 38.66 38.66 25.33
7 20 70.83 70.83 79.16
8 47.64 81.17 81.17 68.82
9 28.5 81 82.5 89
10 30 83.5 84 87.5
11 30.47 83.8 83.8 84.3
12 29 68.6 68.8 67.2
13 13.1 75 75 88.46
14 52 94 94 84
15 26 82 82 76
16 76 96 96 86
17 64 56 56 62
18 32 84 84 64
19 36 82 82 72
20 5.7 48.57 48.57 62.85
Classwise accuracy rate 37.7 75.9 76.01 76.6
Global accuracy rate 31.84 75.28 75.49 77.02
Figures are in percentage

Table 5: Classification accuracy rates obtained by four 
different classifiers using combination of log‑energy entropy 
and standard deviation featears for 100 training images
Class number SVM Fuzzy 

classifierPolynomial 
kernel

Gaussian 
kernel

1 95 95 95
2 89.09 89.1 94.54
3 84 84 98
4 58.75 60 67.5
5 53.33 53.33 58.33
6 34.66 33.33 52
7 47.5 47.5 51.66
8 52.94 53.52 28.82
9 84 84.5 91
10 73 73 87
11 78.1 78.57 76.66
12 63.4 63.8 92.4
13 42.69 42.7 78.46
14 92 92 84
15 86 86 88
16 94 96 80
17 40 40 26
18 92 92 78
19 80 80 64
20 34.28 34.28 60
Classwise accuracy rate 68.73 68.93 72.57
Global accuracy rate 65.43 65.69 76.1
Figures are in percentage

Table 6: The best selected parameters for SVM classifier using the grid search
Feature name No. of training images C value g value Cross-validation (%)

Log‑entropy 300 26 2‑9 74.66
Log‑entropy and standard deviation 300 25 2‑7 82.33
Log‑entropy and standard deviation 200 25 2‑9 79.5
Log‑entropy and standard deviation 100 25 2‑7 53.75

set is predicted once so the cross‑validation accuracy is 
the percentage of data which are correctly classified. We 
applied a grid‑search on C and g  using cross‑validation. 
Various pairs of ( , )C g  values are tried and the one with 
the best cross‑validation accuracy is picked. It should be 
noted that trying exponentially growing sequences of C  
and is a practical method to identify good parameters (for 
example, C = =− − − − −2 2 2 2 2 25 3 15 15 13 3, , , , , , , .K Kg ).[23] Hence, 
in this paper, we use a grid search and find the best pairs 
of ( , )C g  values with five‑fold to obtain the best results for 
SVM classifier. These values are listed in Table 6. 

Table  2 shows that for 300 training images and by using 
the log‑entropy features, MLP provides a classwise accuracy 
56.1% and the global accuracy as 56.22%. These values are 
75.42% and 70.1% with polynomial kernel SVM and 75.6% 
and 70.23% with Gaussian kernel. The proposed fuzzy 
classifier provides an improved classwise accuracy and 
global accuracy values and they are 78.61% and 80.38%, 
respectively. Thus there is an increase of nearly 22% of 

classwise accuracy by the proposed method, and the 
corresponding global accuracy value is increased by 24% 
compared to MLP. Similarly, an increase of nearly 3% and 
10% in classwise and global accuracy are obtained compared 
with the SVM classifier, respectively. Also, an improvement 
with the proposed fuzzy classifier can be observed with 
combination of log‑entropy and standard deviation features 
for 300  training data, i.e., with the proposed classifier, 
polynomial kernel SVM, Gaussian kernel SVM and MLP 
methods classwise accuracies are 82.32%, 82.15%, 82.08%, 
and 52.24%, respectively. Also there is an increase in global 
accuracy of 3% with the proposed method compared with 
SVM and of 27% with MLP. From these values, it is obvious 
that the proposed classifier provides a better global 
and classwise accuracy compared with the SVM and MLP 
[Table 3]. 

The superiority of the proposed fuzzy classifier is also 
validated with 200 and 100  training images as shown in 
Tables 4 and 5, respectively. A comparison is made among 
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the four classifier mentioned earlier. Table  4 shows that 
the classwise accuracy with the proposed classifier using 
combination of features and 200 training images is 76.6%, 
which is more than 76.01%, 75.9%, and 37.7% obtained 
using Gaussian kernel SVM, polynomial kernel SVM, and 
MLP, respectively. Also, an improvement of global accuracy 
value is obtained by the proposed classifier. For example, 
the global accuracy values are 77.02%, 75.49%, 75.28%, and 
31.54%, respectively. In addition, Tables 4 and 5 also reveal 
that the global accuracy rate obtained with the proposed 
classifier for 100  training data is nearly the same as with 
the SVM at 200 training data. This is particularly important 
when there is a scarcity of training images.

From the classification results of four different classifiers, it 
is observed that for all cases the proposed fuzzy classifier 
performed better than the MLP and even SVM with optimum 
parameters. For 300 training images and by using combination 
of features, the summarized results are shown in Table 7.

Conclusion

A novel fuzzy scheme for medical x‑ray image classification 
has been presented. In order to improve performance of 
medical x‑ray image classification, an effective fuzzy classifier 
was introduced. The experimental results demonstrated 
the efficiency of proposed scheme. Future works involved 
evaluating performance of fuzzy SVM and fuzzy Neuron 
Network classifiers for medical x‑ray image classification.
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Table 7: Summarized results obtained by four different 
classifiers for 300 training images
Classification 
method

Feature name Accuracy rate

Log‑energy 
entropy

Standard 
deviation

Classwise Global

MLP * 56.1 56.22
Polynomial kernel SVM * 75.42 70.1
Gaussian kernel SVM * 75.6 70.23
Proposed method * 78.61 80.38
MLP * * 52.24 57.11
Polynomial kernel SVM * * 82.15 82.08
Gaussian kernel SVM * * 82.11 82.08
Proposed method * * 82.32 84.3
Figures are in percentage
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